Skip to main content

Advertisement

Log in

Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates simultaneous vibration suppression and energy harvesting through a continuous dynamic vibration absorber (DVA) with piezoelectric coupling, both numerically and analytically. The proposed system is composed of a simply supported host beam that is under a periodic external forcing or transient excitation in the form of an initial condition. Besides, a DVA is attached to the host beam. First, the governing electromechanical equations of the coupled system are derived. Next, convergence analyses are performed to find the effects of the considering higher modes of the host and absorber beam. Furthermore, the frequency response curves of the mechanical and electrical responses are obtained. It is observed that the DVA can effectively annihilate the host structure vibrations, up to 98.5%, and at the same time harvest considerable levels of voltage/power. Moreover, comprehensive investigations on the role of various mechanical and electrical parameters on the system responses are carried out. To validate the numerical results, an analytical solution is provided and a great agreement between these solution schemes is observed. Also, the dynamics of the considered system under an initial condition is inspected. Finally, the effects of the PZT layers in vibration isolation performance are studied. Results divulged that, upon the proper tuning of the mechanical and electrical parameters, the proposed DVA can significantly scavenge energy and mitigate vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou, M., Zhao, H.: Revisit to the theoretical analysis of a classical piezoelectric vibration energy harvester. Arch. Appl. Mech. 90(11), 2379–2395 (2020)

    Article  Google Scholar 

  2. Rezaei, M., Talebitooti, R., Rahmanian, S.: Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances. Energy 182, 369–380 (2019)

    Article  Google Scholar 

  3. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  4. Wang, K.F., et al.: Nonlinear analysis of piezoelectric wind energy harvesters with different geometrical shapes. Arch. Appl. Mech. 90(4), 721–736 (2020)

    Article  Google Scholar 

  5. Beeby, S.P., et al.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257 (2007)

    Article  Google Scholar 

  6. Castagnetti, D.: A simply tunable electromagnetic pendulum energy harvester. Meccanica 54(6), 749–760 (2019)

    Article  Google Scholar 

  7. Xie, Z., et al.: A hula-hooping-like nonlinear buckled elastic string electromagnetic energy harvester for omnidirectional broadband excitations. Smart Mater. Struct. 29(7), 075026 (2020)

    Article  Google Scholar 

  8. Suzuki, Y., et al.: A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J. Micromech. Microeng. 20(10), 104002 (2010)

    Article  Google Scholar 

  9. Lallart, M., Pruvost, S., Guyomar, D.: Electrostatic energy harvesting enhancement using variable equivalent permittivity. Phys. Lett. A 375(45), 3921–3924 (2011)

    Article  Google Scholar 

  10. Madinei, H., et al.: A hybrid piezoelectric and electrostatic vibration energy harvester. In: Shock and vibration, aircraft/aerospace, energy harvesting, acoustics and optics, vol. 9, pp. 189–195. Springer (2016)

    Google Scholar 

  11. Rahmani-Naeim-Abadi, M., Saidi, A.R., Askari-Farsangi, M.A.: Piezoelectric energy harvesting via thin annular sectorial plates: an analytical approach. Arch. Appl. Mech. 91(7), 3365–3382 (2021)

    Article  Google Scholar 

  12. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  Google Scholar 

  13. Xia, G., et al.: Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations. Arch. Appl. Mech. 90(10), 2297–2318 (2020)

    Article  Google Scholar 

  14. Rezaei, M., Talebitooti, R., Friswell, M.I.: Efficient acoustic energy harvesting by deploying magnetic restoring force. Smart Mater. Struct. 28, 105037 (2019)

    Article  Google Scholar 

  15. Zhu, P., et al.: Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. 87(1), 45–57 (2017)

    Article  Google Scholar 

  16. Fan, K., et al.: A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renew. Energy 138, 292–302 (2019)

    Article  Google Scholar 

  17. Kim, J., Dorin, P., Wang, K.W.: Vibration energy harvesting enhancement exploiting magnetically coupled bistable and linear harvesters. Smart Mater. Struct. 29(6), 065006 (2020)

    Article  Google Scholar 

  18. Yang, Z., Tan, Y., Zu, J.: A multi-impact frequency up-converted magnetostrictive transducer for harvesting energy from finger tapping. Int. J. Mech. Sci. 126, 235–241 (2017)

    Article  Google Scholar 

  19. Eghbali, P., et al.: Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting. Sci. Rep. 10(1), 16338 (2020)

    Article  MathSciNet  Google Scholar 

  20. Mamaghani, A.E., Khadem, S., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86(3), 1761–1795 (2016)

    Article  Google Scholar 

  21. Vasques, C., Rodrigues, J.D.: Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies. Comput. Struct. 84(22–23), 1402–1414 (2006)

    Article  Google Scholar 

  22. Zhang, C., Wang, H.: Swing vibration control of suspended structure using active rotary inertia driver system: parametric analysis and experimental verification. Appl. Sci. 9(15), 3144 (2019)

    Article  Google Scholar 

  23. Zhang, C., Wang, H.: Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations. Appl. Sci. 9(20), 4391 (2019)

    Article  Google Scholar 

  24. Alam, Z., Zhang, C., Samali, B.: The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures. Earthq. Eng. Eng. Vib. 19(1), 223–237 (2020)

    Article  Google Scholar 

  25. Zhu, X., Chen, Z., Jiao, Y.: Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates. J. Low Freq. Noise Vib. Active Control 37(4), 1188–1200 (2018)

    Article  Google Scholar 

  26. Ari, M., Faal, R.T.: Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers. Arch. Appl. Mech. 90(2), 235–274 (2020)

    Article  Google Scholar 

  27. Liu, Y., et al.: Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber. Arch. Appl. Mech. 1–20 (2021)

  28. Frahm, H.: Device for damping vibrations of bodies. 1911, Google Patents

  29. Zhang, C., Ali, A.: The advancement of seismic isolation and energy dissipation mechanisms based on friction. Soil Dyn. Earthq. Eng. 146, 106746 (2021)

    Article  Google Scholar 

  30. Abdelmoula, H., et al.: Control of base-excited dynamical systems through piezoelectric energy harvesting absorber. Smart Mater. Struct. 26(9), 095013 (2017)

    Article  Google Scholar 

  31. Zoka, H., Afsharfard, A.: Double stiffness vibration suppressor and energy harvester: an experimental study. Mech. Syst. Signal Process. 121, 1–13 (2019)

    Article  Google Scholar 

  32. Kecik, K.: Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mech. Syst. Signal Process. 106, 198–209 (2018)

    Article  Google Scholar 

  33. Nili Ahmadabadi, Z., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333(19), 4444–4457 (2014)

    Article  Google Scholar 

  34. Pennisi, G., et al.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Article  Google Scholar 

  35. Rezaei, M., Talebitooti, R., Liao, W.-H.: Exploiting bi-stable magneto-piezoelastic absorber for simultaneous energy harvesting and vibration mitigation. Int. J. Mech. Sci. 207, 106618 (2021)

    Article  Google Scholar 

  36. Bibo, A., Abdelkefi, A., Daqaq, M.F.: Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations. J. Vib. Acoust. 137(3) (2015)

  37. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley (2011)

  38. Rezaei, M., Khadem, S.E., Friswell, M.: Energy harvesting from the secondary resonances of a nonlinear piezoelectric beam under hard harmonic excitation. Meccanica 55(7), 1463–1479 (2020)

    Article  MathSciNet  Google Scholar 

  39. Sobhanirad, S., Afsharfard, A.: Improving application of galloping-based energy harvesters in realistic condition. Arch. Appl. Mech. 89(2), 313–328 (2019)

    Article  Google Scholar 

  40. Zhao, X., Zhu, W., Li, Y.: Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions. J. Sound Vib 481, 115407 (2020)

    Article  Google Scholar 

  41. Zhao, X., et al.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464, 115001 (2020)

    Article  Google Scholar 

  42. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22(1), 015014 (2012)

    Article  Google Scholar 

  43. Rao, S.S.: Vibration of continuous systems. Vol. 464, Wiley (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Talebitooti.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The orthonormality condition of the upper and lower beams, characteristic equation of the absorber, and \({\text{\rm Z}}_{i}\) relationship are provided in Eqs. (4548).

$$\rho_{m} A_{m} \mathop \int \limits_{0}^{{L_{m} }} \overline{{C_{I} }} \sin \left( {\frac{I\pi }{{L_{m} }}S} \right) \cdot \overline{{C_{J} }} \sin \left( {\frac{J\pi }{{L_{m} }}S} \right)dS = \delta_{IJ} \to \overline{{C_{I} }} = \sqrt {\frac{2}{{\rho_{m} A_{m} L_{m} }}}$$
(45)
$$\mathop \int \limits_{0}^{{L_{a} }} \phi_{i} \left( s \right)m_{a} \phi_{j} \left( s \right)ds + \left\{ {\phi_{i} \left( s \right)M_{t} \phi_{j} \left( s \right)} \right\}_{{s = L_{a} }} = \delta_{ij}$$
(46)
$$\frac{{M_{t} }}{{m_{a} L_{a} }}\left( {\sinh \lambda_{i} \cos \lambda_{i} - \cosh \lambda_{i} \sin \lambda_{i} } \right)\lambda_{i} + \left( {1 + \cos \lambda_{i} \cosh \lambda_{i} } \right) = 0$$
(47)
$${\rm Z}_{i} = \frac{{\left( {\sin \lambda_{i} - \sinh \lambda_{i} } \right) + \frac{{M_{t} }}{{m_{a} L_{a} }}\lambda_{i} \left( {\cos \lambda_{i} - \cosh \lambda_{i} } \right)}}{{\left( {\cos \lambda_{i} + \cosh \lambda_{i} } \right) - \frac{{M_{t} }}{{m_{a} L_{a} }}\lambda_{i} \left( {\sin \lambda_{i} - \sinh \lambda_{i} } \right)}}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, M., Talebitooti, R. & Liao, WH. Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Arch Appl Mech 92, 363–382 (2022). https://doi.org/10.1007/s00419-021-02063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02063-4

Keywords

Navigation