Skip to main content
Log in

A mechanical model of the crack-bridging effect in nacre with interlocking interface

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The excellent mechanical properties of nacre have attracted the research interest of countless scholars and inspired the optimal design of novel nacre-like materials. In recent years, studies have found that the interface between the mineral platelet and the organic layer of nacre has an uneven micro-topological structure, which has an interlocking effect during the deformation process, and plays a vital role in the mechanical response of nacre. The interlocking structure can increase the sliding resistance of the platelets to increase the fracture toughness. Based on this mechanism, we adapted a crack-bridging model to elucidate the influence of the interlocking angle on the fracture toughness and crack-bridging toughening effect of nacre. The critical interlocking angle and fracture toughness calculated by this model are consistent with the observed and actual experimental results in nacre. This model is of great significance for guiding the interface interlocking design of novel nacre-like materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Emery, Z.L., Vlasta, N.L.: The evolution of brittle fracture in rocks. J Geol Soc Lond 130, 1–16 (1974)

    Article  Google Scholar 

  2. Zhao, Y.L., Wang, Y.X., Wang, W.J., et al.: Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far field stresses. Theor. Appl. Fract. Mech. 101, 59–66 (2019)

    Article  Google Scholar 

  3. Zhao, Y.L., Zhang, L.Y., Asce, F., et al.: Experimental study of fracture toughness and subcritical crack growth of three rocks under different environments. Int. J. Geomech. 20(8), 04020128 (2020)

    Article  Google Scholar 

  4. Meyers, M.A., McKittrick, J., Chen, P.Y.: Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)

    Article  Google Scholar 

  5. Sarikaya, M., Gunnison, K.E., Yasrebi, M., et al.: Mechanical property-microstructural relationships in abalone shell. Mater. Res. Soc. Symp. Proc. 174, 109–116 (1989)

    Article  Google Scholar 

  6. Li, X.D., Chang, W.C., Chao, Y.J., et al.: Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano. Lett. 4, 613–617 (2004)

    Article  Google Scholar 

  7. Oaki, Y., Imai, H.: The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 117, 6571–6575 (2010)

    Google Scholar 

  8. Jackson, A.P., Vincent, J., Turner, R.M.: The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988)

    Article  Google Scholar 

  9. Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 1144–1147 (2005)

    Article  Google Scholar 

  10. Espinosa, H.D., Rim, J.E., Barthelat, F., et al.: Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059–1100 (2009)

    Article  Google Scholar 

  11. Kamat, S., Su, X., Ballarini, R., et al.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036–1040 (2000)

    Article  Google Scholar 

  12. Ji, B.H., Gao, H.J.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Silids 52, 1963–1990 (2004)

    Article  Google Scholar 

  13. Barthelat, F., Rabiei, R.: Toughness amplification in natural composites. J. Mech. Phys. Solids 59, 829–840 (2011)

    Article  MathSciNet  Google Scholar 

  14. Launey, M.E., Ritchie, R.O.: On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009)

    Article  Google Scholar 

  15. Bao, G., Suo, Z.: Remarks on crack-bridging concepts. Appl. Mech. Rev. 45, 355–366 (1992)

    Article  Google Scholar 

  16. Bao, G., Song, Y.: Crack bridging models for fiber composites with slip-dependent interfaces. J. Mech. Phys. Solids 41, 1425–1444 (1993)

    Article  Google Scholar 

  17. Shao, Y., Zhao, H.P., Feng, X.Q., et al.: Discontinuous crack-bridging model for fracture toughness analysis of nacre. J. Mech. Phys. Solids 60, 1400–1419 (2012)

    Article  MathSciNet  Google Scholar 

  18. Shao, Y., Zhao, H.P., Feng, X.Q.: On flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)

    Article  Google Scholar 

  19. Barthelat, F., Espinosa, H.D.: An experimental investigation of deformation and fracture of nacre–mother of pearl. Exp. Mech. 47, 311–324 (2007)

    Article  Google Scholar 

  20. Katti, K.S., Katti, D.R., Pradhan, S.M., et al.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097–1100 (2005)

    Article  Google Scholar 

  21. Espinosa, H.D., Juster, A.L., Latourte, F.J., et al.: Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2, 1–9 (2011)

    Article  Google Scholar 

  22. Rabiei, R., Bekah, S., Barthelat, F.: Failure mode transition in nacre and bone-like materials. Acta Biomater. 6, 4081–4089 (2010)

    Article  Google Scholar 

  23. Barthelat, F., Tang, H., Zavattieri, P., et al.: On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007)

    Article  Google Scholar 

  24. Al-Maskari, N.S., Mcadams, D.A., Reddy, J.N.: Modeling of a biological material nacre: waviness stiffness model. Mater. Sci. Eng. C 70, 772–776 (2017)

    Article  Google Scholar 

  25. Al-Maskari, N.S., Mcadams, D.A., Reddy, J.N.: Modeling of a biological material nacre: waviness toughness model. Mech. Adv. Mater. Struct. 26, 789–795 (2019)

    Article  Google Scholar 

  26. Ghazlan, A., Ngo, T.D., Tran, P.: Influence of interfacial geometry on the energy absorption capacity and load sharing mechanisms of nacreous composite shells. Compos. Struct. 132, 299–309 (2015)

    Article  Google Scholar 

  27. Cui, S.K., Lu, Z.X., Yang, Z.Y.: Effect of interlocking structure on mechanical properties of bio-inspired nacreous composites. Compos. Struct. 226, 111260 (2019)

    Article  Google Scholar 

  28. Cui, S.K., Lu, Z.X., Yang, Z.Y.: An analytical model for the bio-inspired nacreous composites with interlocked “brick-and-mortar” structures. Compos. Sci. Technol. 193, 108131 (2020)

    Article  Google Scholar 

  29. Liu, F., Li, T.T., Jia, Z., et al.: Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites. Extrem. Mech. Lett. 35, 100621 (2019)

    Article  Google Scholar 

  30. Valashani, S.M.M., Barthelat, F.: A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre. Bioinspir. Biomim. 10, 026005 (2015)

    Article  Google Scholar 

  31. Yao, H.M., Song, Z.G., Xu, Z.P., et al.: Cracks fail to intensify stress in nacreous composites. Compos. Sci. Technol. 81, 24–29 (2013)

    Article  Google Scholar 

  32. Budiansky, B., Amazigo, J.C.: Toughening by aligned, frictionally constrained fibers. J. Mech. Phys. Solids 37, 93–109 (1989)

    Article  Google Scholar 

  33. Meyers, M.A., Lim, C.T., Li, A., et al.: The role of organic intertile layer in abalone nacre. Mater. Sci. Eng. C 29, 2398–2410 (2009)

    Article  Google Scholar 

  34. Wang, R.Z., Gupta, H.S.: Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011)

    Article  Google Scholar 

  35. Song, F., Bai, Y.L.: Effects of nanostructures on the fracture strength of the interfaces in nacre. J. Mater. Res. 18, 1741–1744 (2003)

    Article  Google Scholar 

  36. Barthelat, F., Li, C.M., Comi, C., et al.: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977–1986 (2006)

    Article  Google Scholar 

  37. Meyers, M.A., Chen, P.Y., Lin, Y.M., et al.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

    Article  Google Scholar 

  38. Fleischli, F.D., Dietiker, M., Borgia, C., et al.: The influence of internal length scales on mechanical properties in natural nanocomposites: a comparative study on inner layers of seashells. Acta Biomater 4, 1694–1706 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support by the National Natural Science Foundation of China (NSFC) under Grant Nos. 1177220 and 12021002

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan-yun Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Yj., Huang, Gy. A mechanical model of the crack-bridging effect in nacre with interlocking interface. Arch Appl Mech 92, 151–162 (2022). https://doi.org/10.1007/s00419-021-02046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02046-5

Keywords

Navigation