Skip to main content
Log in

Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work analyzes the free vibration of a spinning functionally graded graphene platelet-reinforced metal foam (FG-GPLRMF) beam. The differential transformation method is extended to analyze flap-wise bending vibration and chordwise bending vibration with Coriolis force effect for the first time. The beam is modeled using the Euler–Bernoulli beam theory. The Halpin–Tsai micromechanics model is utilized to predict effective material properties. Various types of graphene platelet (GPL) and porosity distributions are considered. The governing equations and corresponding boundary conditions of the FG-GPLRMF beam are obtained via Hamilton’s principle. Results show that the vibration characteristics of the FG-GPLRMF beam are affected by the GPL geometry size, types of porosity, and GPL distributions. Among different types of porosity, the Porosity-A causes the highest fundamental natural frequency, while the Porosity-B corresponds to the lowest one of the spinning FG-GPLRMF beam in most cases. Moreover, the GPL pattern and porosity distribution have a coupled effect on the bending vibration of the spinning FG-GPLRMF beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, Y.Q., Zhao, H.L.: Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch. Appl. Mech. 89(11), 2335–2349 (2019). https://doi.org/10.1007/s00419-019-01579-0

    Article  Google Scholar 

  2. Rabiei, A., O’Neill, A.T.: A study on processing of a composite metal foam via casting. Mater. Sci. Eng. a-Struct. Mater. Proper. Microstruct. Process. 404(1–2), 159–164 (2005). https://doi.org/10.1016/j.msea.2005.05.089

    Article  Google Scholar 

  3. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017). https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  4. Groven, L.J., Puszynski, J.A.: Solution combustion synthesis of carbon nanotube loaded nickel foams. Mater. Lett. 73, 126–128 (2012). https://doi.org/10.1016/j.matlet.2012.01.033

    Article  Google Scholar 

  5. Duarte, I., Ventura, E., Olhero, S., Ferreira, J.M.F.: An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon 95, 589–600 (2015). https://doi.org/10.1016/j.carbon.2015.08.065

    Article  Google Scholar 

  6. Zhang, Z., Ding, J., Xia, X.C., Sun, X.H., Song, K.H., Zhao, W.M., Liao, B.: Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater. Des. 88, 359–365 (2015). https://doi.org/10.1016/j.matdes.2015.09.017

    Article  Google Scholar 

  7. Garcia-Macias, E., Rodriguez-Tembleque, L., Saez, A.: Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 186, 123–138 (2018). https://doi.org/10.1016/j.compstruct.2017.11.076

    Article  Google Scholar 

  8. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  9. Mao, J.-J., Zhang, W.: Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos. Struct. 203, 551–565 (2018). https://doi.org/10.1016/j.compstruct.2018.06.076

    Article  Google Scholar 

  10. Wang, A., Chen, H., Hao, Y., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018). https://doi.org/10.1016/j.rinp.2018.02.062

    Article  Google Scholar 

  11. Zhang, W., Niu, Y., Behdinan, K.: Vibration characteristics of rotating pretwisted composite tapered blade with graphene coating layers. Aerosp. Sci. Technol. 98, 105644 (2020). https://doi.org/10.1016/j.ast.2019.105644

    Article  Google Scholar 

  12. Zhao, T.Y., Cui, Y.S., Pan, H.G., Yuan, H.Q., Yang, J.: Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. Int. J. Mech. Sci. 197, 106335 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106335

    Article  Google Scholar 

  13. Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G., Cai, Y.: Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle. Appl. Math. Model. (2021). https://doi.org/10.1016/j.apm.2020.12.025

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Y., Li, X., Gao, K., Li, Y., Yang, J.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. 99(2), 981–1000 (2020). https://doi.org/10.1007/s11071-019-05297-8

    Article  MATH  Google Scholar 

  15. Dong, Y., Zhu, B., Wang, Y., He, L., Li, Y., Yang, J.: Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Appl. Math. Model. 71, 331–348 (2019). https://doi.org/10.1016/j.apm.2019.02.024

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, Y., Zhu, B., Wang, Y., Li, Y., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018). https://doi.org/10.1016/j.jsv.2018.08.036

    Article  Google Scholar 

  17. Yang, Y., Chen, B., Lin, W., Li, Y., Dong, Y.: Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp. Sci. Technol. 110, 106495 (2021). https://doi.org/10.1016/j.ast.2021.106495

    Article  Google Scholar 

  18. Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Struct. 164, 107799 (2021). https://doi.org/10.1016/j.tws.2021.107799

    Article  Google Scholar 

  19. Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances. Nonlinear Dyn. 104(3), 2051–2069 (2021). https://doi.org/10.1007/s11071-021-06401-7

    Article  Google Scholar 

  20. Yas, M.H., Rahimi, S.: Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Appl. Math. Mech.-Engl. Edn. 41(8), 1209–1226 (2020). https://doi.org/10.1007/s10483-020-2634-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018). https://doi.org/10.1016/j.compstruct.2018.03.090

    Article  Google Scholar 

  22. Dong, Y., He, L., Wang, L., Li, Y., Yang, J.: Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82, 466–478 (2018). https://doi.org/10.1016/j.ast.2018.09.037

    Article  Google Scholar 

  23. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B-Eng. 145, 1–13 (2018). https://doi.org/10.1016/j.compositesb.2018.03.009

    Article  Google Scholar 

  24. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019). https://doi.org/10.1016/j.ast.2018.12.022

    Article  Google Scholar 

  25. Banerjee, J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000). https://doi.org/10.1006/jsvi.1999.2855

    Article  MATH  Google Scholar 

  26. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002). https://doi.org/10.1006/jsvi.2001.3856

    Article  Google Scholar 

  27. Huang, C.L., Lin, W.Y., Hsiao, K.M.: Free vibration analysis of rotating Euler beams at high angular velocity. Comput. Struct. 88(17–18), 991–1001 (2010). https://doi.org/10.1016/j.compstruc.2010.06.001

    Article  Google Scholar 

  28. Shahba, A., Attarnejad, R., Zarrinzadeh, H.: Free vibration analysis of centrifugally stiffened tapered functionally graded beams. Mech. Adv. Mater. Struct. 20(5), 331–338 (2013). https://doi.org/10.1080/15376494.2011.627634

    Article  Google Scholar 

  29. Aksencer, T., Aydogdu, M.: Flapwise vibration of rotating composite beams. Compos. Struct. 134, 672–679 (2015). https://doi.org/10.1016/j.compstruct.2015.08.130

    Article  Google Scholar 

  30. Adair, D., Jaeger, M.: Vibration analysis of a uniform pre-twisted rotating Euler–Bernoulli beam using the modified Adomian decomposition method. Math. Mech. Solids 23(9), 1345–1363 (2018). https://doi.org/10.1177/1081286517720843

    Article  MathSciNet  MATH  Google Scholar 

  31. Dong, S.P., Li, L., Zhang, D.G.: Vibration analysis of rotating functionally graded tapered beams with hollow circular cross-section. Aerosp. Sci. Technol. 95, 105476 (2019). https://doi.org/10.1016/j.ast.2019.105476

    Article  Google Scholar 

  32. Zhou, J.: Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986)

    Google Scholar 

  33. Özdemir, Ö., Kaya, M.: Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J. Sound Vib. 289(1–2), 413–420 (2006). https://doi.org/10.1016/j.jsv.2005.01.055

    Article  MATH  Google Scholar 

  34. Arvin, H.: The flapwise bending free vibration analysis of micro-rotating timoshenko beams using the differential transform method. J. Vib. Control 24(20), 4868–4884 (2018). https://doi.org/10.1177/1077546317736706

    Article  MathSciNet  Google Scholar 

  35. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R-Rep. 74(10), 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001

    Article  Google Scholar 

  36. De Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55(9), 3025–3031 (2007). https://doi.org/10.1016/j.actamat.2007.01.007

    Article  Google Scholar 

  37. Affdl, J.H., Kardos, J.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  38. Gibson, I., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 382(1782), 43–59 (1982). https://doi.org/10.1098/rspa.1982.0088

    Article  Google Scholar 

  39. Kane, T., Ryan, R., Banerjeer, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control. Dyn. 10(2), 139–151 (1987). https://doi.org/10.2514/3.20195

    Article  Google Scholar 

  40. Eisenhart, L.P.: Introduction to Differential Geometry. Princeton University Press, Princeton (2015)

    Google Scholar 

  41. Gorman, D.J.: Free Vibration Analysis of Beams and Shafts(Book). Research Supported by the National Research Council of Canada. Wiley-Interscience, New York (1975)

    Google Scholar 

  42. Banerjee, J.R., Kennedy, D.: Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333(26), 7299–7312 (2014). https://doi.org/10.1016/j.jsv.2014.08.019

    Article  Google Scholar 

  43. Cheng, J.L., Xu, H., Yan, A.Z.: Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect. Mech. Based Des. Struct. Mach. 34(1), 25–47 (2006). https://doi.org/10.1080/15367730500501587

    Article  Google Scholar 

  44. Yang, J., Jiang, L., Chen, D.C.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274(3–5), 863–875 (2004). https://doi.org/10.1016/S0022-460X(03)00611-4

    Article  MathSciNet  MATH  Google Scholar 

  45. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212(5), 807–828 (1998). https://doi.org/10.1006/jsvi.1997.1469

    Article  Google Scholar 

  46. Keskin, Y., Oturanc, G.: Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 10(6), 741–749 (2009). https://doi.org/10.1515/IJNSNS.2009.10.6.741

    Article  Google Scholar 

  47. Wright, A., Smith, C., Thresher, R., Wang, J.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech. 49, 197–202 (1982). https://doi.org/10.1115/1.3161966

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11922205, 12072201), LiaoNing Revitalization Talents Program (Grant No. XLYC1807026), and the Fundamental Research Funds for the Central Universities (Grant No. N2005019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Wang, Y.Q. & Zhang, Y. Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Arch Appl Mech 91, 4817–4834 (2021). https://doi.org/10.1007/s00419-021-02036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02036-7

Keywords

Navigation