Skip to main content
Log in

Elastoplastic nonlinear analysis of functionally graded beams utilizing the symplectic method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Elastoplastic nonlinear bending behaviors of ceramic–metal composite functionally graded material (FGM) beams are investigated using the symplectic method in Hamilton system with the classical beam theory. The mechanical properties of two-phase materials are assumed to be power function of the thickness, and the elastoplastic material properties of the FGM beams are given by the linear rule of mixtures. The bilinear hardening elastoplastic constitutive equations are established based on the Tamura–Tomota–Ozawa hybrid reinforcement model. And the von-Mises yield condition is introduced to judge whether the beams have entered the plastic deformation. The canonical equations are solved by the symplectic method, and the loads and deflections are transformed into the symplectic eigenvalues and symplectic eigensolutions in symplectic space and obtained by analytical solutions. Examples of bending behaviors varying with load, deflection, slenderness ratio and power law index are presented. The obtained results reveal that the zones of the elastic bending and the elastoplastic bending as well as the peak values of the deflections vary with material and geometric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F., Lee, J.: Static behaviour of functionally graded sandwich beams using a quasi-3D theory. Compos. B Eng. 68, 59–74 (2015). https://doi.org/10.1016/j.compositesb.2014.08.030

    Article  Google Scholar 

  2. Frikha, A., Hajlaoui, A., Wail, M., Dammak, F.: A new higher order C-0 mixed beam element for FGM beams analysis. Compos. B Eng. 106, 181–189 (2016). https://doi.org/10.1016/j.compositesb.2016.09.024

    Article  Google Scholar 

  3. Sofiyev, A.H.: The buckling and vibration analysis of coating-FGM-substrate conical shells under hydrostatic pressure with mixed boundary conditions. Compos. Struct. 209(1), 686–693 (2019). https://doi.org/10.1016/j.compstruct.2018.10.104

    Article  Google Scholar 

  4. Naebe, M., Shirvanimoghaddam, K.: Functionally graded materials: a review of fabrication and properties. Appl. Mater. Today 5, 223–245 (2016). https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  5. Swaminathan, K., Sangeetha, D.M.: Thermal analysis of FGM plates–a critical review of various modeling techniques and solution methods. Compos. Struct. 160, 43–60 (2017). https://doi.org/10.1016/j.compstruct.2016.10.047

    Article  Google Scholar 

  6. Mahmoud, D.M., Elbestawi, M.A.: Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J. Manuf. Mater. Process. 1, 1–13 (2017). https://doi.org/10.3390/jmmp1020013

    Article  Google Scholar 

  7. Nooni, A.R., Aslan, T.A., Temel, B.: An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Compos. Struct. 200(15), 701–710 (2018). https://doi.org/10.1016/j.compstruct.2018.05.077

    Article  Google Scholar 

  8. Noori, A.R., Aslan, T.A., Temel, B.: Dynamic analysis of functionally graded porous beams using complementary functions method in the Laplace domain. Compos. Struct. 256, 113094 (2021). https://doi.org/10.1016/j.compstruct.2020.113094

    Article  Google Scholar 

  9. Madenci, E.: Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM. Steel Compos. Struct. 39(5), 493–509 (2021). https://doi.org/10.12989/scs.2021.39.5.493

    Article  Google Scholar 

  10. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R., Tounsi, A.: Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput. Concr. 26(3), 213–226 (2020). https://doi.org/10.12989/cac.2020.26.3.213

    Article  Google Scholar 

  11. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2021). https://doi.org/10.1016/j.compstruct.2021.114030

    Article  Google Scholar 

  12. Menasria, A., Abdelhakim, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R.: A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Compos. Struct. 36(3), 355–367 (2021). https://doi.org/10.12989/scs.2020.36.3.355

    Article  Google Scholar 

  13. Noori, A.R., Aslan, T.A., Temel, B.: Static analysis of FG beams via complementary functions method. Eur. Mech. Sci. 4(1), 1–6 (2020). https://doi.org/10.26701/ems.590864

    Article  Google Scholar 

  14. Rebai, B., Bouhadra, A., Bousahla, A.A., Meradjah, M., Bourada, F., Tounsi, A., Tounsi, A., Hussain, M.: Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT. Arch. Appl. Mech. 91, 3403–3420 (2021). https://doi.org/10.1007/s00419-021-01973-7

    Article  Google Scholar 

  15. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33, 2177–2189 (2021). https://doi.org/10.1016/j.istruc.2021.05.090

    Article  Google Scholar 

  16. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel Compos. Struct. 39(5), 631–643 (2021). https://doi.org/10.12989/scs.2021.39.5.631

    Article  Google Scholar 

  17. Hachemi, H., Bousahla, A.A., Abdelhakim, K., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M., Mahmoud, S.R.: Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position. Steel Compos. Struct. 39(1), 51–64 (2021). https://doi.org/10.12989/scs.2021.39.1.051

    Article  Google Scholar 

  18. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Tounsi, A.: Bending analysis of functionally graded porous plates via a refined shear deformation theory. Comput. Concr. 26(1), 63–74 (2020). https://doi.org/10.12989/cac.2020.26.1.063

    Article  Google Scholar 

  19. Rabhi, M., Benrahou, K.H., Abdelhakim, K., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Tounsi, A.: A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Geomech. Eng. 22(2), 119–132 (2020). https://doi.org/10.12989/gae.2020.22.2.119

    Article  Google Scholar 

  20. Zhang, J.H., Zheng, W.: Elastoplastic buckling of FGM beams in thermal environment. Contin. Mech. Therm. 33, 151–161 (2020). https://doi.org/10.1007/s00161-020-00895-z

    Article  MathSciNet  Google Scholar 

  21. Bakoura, A., Bourada, F., Bousahla, A.A., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Buckling analysis of functionally graded plates using HSDT in conjuction with the stress function method. Comput. Concr. 27(1), 78–83 (2021). https://doi.org/10.12989/cac.2021.27.1.073

    Article  Google Scholar 

  22. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput. Concr. 26(5), 439–450 (2020). https://doi.org/10.12989/cac.2020.26.5.439

    Article  Google Scholar 

  23. Chikr, S.C., Abdelhakim, K., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H., Tounsi, A.: A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach. Geomech. Eng. 21(5), 471–487 (2020). https://doi.org/10.12989/gae.2020.21.5.471

    Article  Google Scholar 

  24. Shegokar, N.L., Lal, A.: Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties. Compos. Struct. 100, 17–33 (2013). https://doi.org/10.1016/j.compstruct.2012.12.032

    Article  Google Scholar 

  25. Aldousari, S.M.: Bending analysis of different material distributions of functionally graded beam. Appl. Phys. A Mater. 123(4), 296 (2017). https://doi.org/10.1007/s00339-017-0854-0

    Article  Google Scholar 

  26. Zhang, P., Qing, H., Gao, C.F.: Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral mode. Compos. Struct. 245(1), 112362 (2020). https://doi.org/10.1016/j.compstruct.2020.112362

    Article  Google Scholar 

  27. Dhananjaya, H.R., Pandey, P.C., Nagabhushanam, J., Othamon, I.: Closed form solutions for element equilibrium and flexibility matrices of eight node rectangular plate bending element using integrated force method. Struct. Eng. Mech. 40(1), 121–148 (2011). https://doi.org/10.12989/sem.2011.40.1.121

    Article  Google Scholar 

  28. Nesterov, S.V.: High-precision analytic solution of the problem on bending vibrations of a clamped square plate. Mech. Solids. 6, 672–676 (2016). https://doi.org/10.3103/S0025654416060066

    Article  Google Scholar 

  29. Magnucki, K., Lewinski, J., Cichy, R.: Bending of beams with bisymmetrical cross sections under non-uniformly distributed load: analytical and numerical-FEM studies. Arch. Appl. Mech. 3, 2103–2114 (2019). https://doi.org/10.1007/s00419-019-01566-5

    Article  Google Scholar 

  30. Magnucki, K., Lewinski, J., Cichy, R.: Bending of beams with bisymmetrical cross sections under non-uniformly distributed load: analytical and numerical-FEM studies. Arch. Appl. Mech. 89, 2103–2114 (2019). https://doi.org/10.1007/s00419-019-01566-5

    Article  Google Scholar 

  31. Pritykin, A.I.: State of stress of castellated beams with circular apertures under distributed load and pure bending. Mater. Sci. Forum 974, 521–528 (2019)

    Article  Google Scholar 

  32. Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S., Mahdi, E.: Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads. Int. J. Press. Vessel Pip. 86(6), 357–372 (2009). https://doi.org/10.1016/j.ijpvp.2008.12.006

    Article  Google Scholar 

  33. Kumar, S., Murthy Reddy, K.V.C.S., Kumar, A., Rohini Devi, G.: Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp. Sci. Technol. 26(1), 185–191 (2013). https://doi.org/10.1016/j.ast.2012.04.002

    Article  Google Scholar 

  34. Boit, M.A.: Bending of an infinite beam on an elastic foundation. J. Appl. Mech. 203, A1–A7 (1937)

    Article  Google Scholar 

  35. Lo, C.C., Das Gupta, S.: Bending of a nonlinear rectangular beam in large deflection. J. Appl. Mech. 45(1), 213–215 (1978). https://doi.org/10.1115/1.3424238

    Article  Google Scholar 

  36. Gupta, C.P.: Existence and uniqueness results for the bending of an elastic beam equation at resonance. J. Math. Anal. Appl. 135(1), 208–225 (1988). https://doi.org/10.1016/0022-247X(88)90149-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, D., Cowin, S.C.: Oscillatory bending of a poroelastic beam. J. Mech. Phys. Solids 42(10), 1575–1599 (1994). https://doi.org/10.1016/0022-5096(94)90088-4

    Article  MathSciNet  MATH  Google Scholar 

  38. Bai, Z.: The Method of lower and upper solutions for a bending of an elastic beam equation. J. Math. Anal. Appl. 248(1), 195–202 (2000). https://doi.org/10.1006/jmaa.2000.6887

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, S.R., Wan, Z.Q., Zhang, J.H.: Free vibration if functionally graded beams based on both classical and first-order shear deformation beam theories. Appl. Math. Mech. 35(5), 591–606 (2014). https://doi.org/10.1007/s10483-014-1815-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, Y.H., Wang, J.Z., Zheng, X.J.: Applications of wavelet Galerkin FEM to bending of beam and plate structures. Appl. Math. Mech. 19(8), 745–755 (1998). https://doi.org/10.1007/BF02457749

    Article  MATH  Google Scholar 

  41. Yu, T., Zhong, Z.A.: General solution of a clamped functionally graded cantilever-beam under uniform loading. Acta. Mech. Solida Sin. 27(1), 15–20 (2006). https://doi.org/10.1016/S1004-4132(06)60027-3

    Article  Google Scholar 

  42. Soleimani, A.: Large deflection of various functionally graded beam using shooting method. Appl. Mech. Mater. 110–116, 4705–4711 (2012)

    Google Scholar 

  43. Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016). https://doi.org/10.1016/j.ijengsci.2016.05.001

    Article  MathSciNet  MATH  Google Scholar 

  44. Tekinalp, B.: Elastic-plastic bending of a built-in circular plate under a uniformly distributed load. J. Mech. Phys. Solids 5(2), 135–142 (1955). https://doi.org/10.1016/0022-5096(57)90057-1

    Article  MathSciNet  Google Scholar 

  45. Weissenbek, E., Pettermann, H.E., Suresh, S.: Elasto-plastic deformation of compositionally graded metal-ceramic composites. Acta. Mater. 45, 3401–3417 (1997). https://doi.org/10.1016/S1359-6454(96)00403-X

    Article  Google Scholar 

  46. Mao, Y.Q., Ai, S.G., Fang, D.N., Fu, Y.M., Chen, C.P.: Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory. Compos. Struct. 101, 168–179 (2013). https://doi.org/10.1016/j.compstruct.2013.01.027

    Article  Google Scholar 

  47. Li, X., Asce, A.M., Guan, M.: Symplectic transfer-matrix method for bending of nonuniform Timoshenko beams on elastic foundations. J. Eng. Mech. 146(6), 04020051 (2020). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001790

    Article  Google Scholar 

  48. Xu, G., Huang, H., Han, Q.: Study on postbuckling of axial compressed elastoplastic functionally graded cylindrical shells. Mech. Adv Mater. Struct. 25(10), 820–828 (2018). https://doi.org/10.1080/15376494.2017.1308589

    Article  Google Scholar 

  49. Huang, H., Han, Q.: Elastoplastic buckling of axially loaded functionally graded material cylindrical shells. Compos. Struct. 117, 135–142 (2014). https://doi.org/10.1016/j.compstruct.2014.06.018

    Article  Google Scholar 

  50. Huang, H., Han, Q.: Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. Int. J. Nonlinear Mech. 44(2), 209–218 (2009). https://doi.org/10.1016/j.ijnonlinmec.2008.11.016

    Article  MATH  Google Scholar 

  51. Nemat-Alla, M., Ahmed, K.I.E., Hassab-Allah, I.: Elastic–plastic analysis of two-dimensional functionally graded materials under thermal loading. Int. J. Solids Struct. 46(14), 2774–2786 (2009). https://doi.org/10.1016/j.ijsolstr.2009.03.008

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11972176) and the Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$k_{1} = \cos \sqrt \beta \cosh \sqrt \beta ,$$
$$k_{2} = \sin \sqrt \beta \sinh \sqrt \beta ,$$
$$k_{3} = \cos \sqrt \beta \sinh \sqrt \beta ,$$
$$k_{4} = \sin \sqrt \beta \cosh \sqrt \beta .$$
$$c_{1}^{{\text{C - S}}} = - 1,$$
$$c_{2}^{{\text{C - S}}} = \frac{{k_{1} \left( {k_{3} + k_{4} } \right) - k_{2} \left( {k_{3} - k_{4} } \right) - 1}}{{k_{2} \left( {k_{3} + k_{4} } \right) + k_{1} \left( {k_{3} - k_{4} } \right)}},$$
$$c_{3}^{{\text{C - S}}} = \frac{{k_{1}^{2} + k_{2}^{2} - k_{1} }}{{k_{1} \left( {k_{3} - k_{4} } \right) + k_{2} \left( {k_{3} + k_{4} } \right)}},$$
$$c_{4}^{{\text{C - S}}} = - \frac{{k_{1}^{2} + k_{2}^{2} - k_{1} }}{{k_{1} \left( {k_{3} - k_{4} } \right) + k_{2} \left( {k_{3} + k_{4} } \right)}};$$
$$c_{1}^{{\text{S - S}}} = - 1,$$
$$c_{2}^{{\text{S - S}}} = 0,$$
$$c_{3}^{{\text{S - S}}} = \frac{{k_{1} k_{3} + k_{2} k_{4} - k_{3} }}{{k_{3}^{2} + k_{4}^{2} }},$$
$$c_{4}^{{\text{S - S}}} = \frac{{k_{1} k_{4} - k_{2} k_{3} - k_{4} }}{{k_{3}^{2} + k_{4}^{2} }}.$$
$${\text{C}}_{{{1}i}}^{{\text{C - S}}} = - 1,$$
$${\text{C}}_{2i}^{{\text{C - S}}} = \frac{{\sinh \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } + \sin \sqrt {\beta_{i} } \cos \sqrt {\beta_{i} } - 1}}{{\sinh \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } - \sin \sqrt {\beta_{i} } \cos \sqrt {\beta_{i} } }},$$
$${\text{C}}_{3i}^{{\text{C - S}}} = \frac{{\cos^{2} \sqrt {\beta_{i} } + \sinh^{2} \sqrt {\beta_{i} } - \cos \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } }}{{\sinh \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } - \sin \sqrt {\beta_{i} } \cos \sqrt {\beta_{i} } }},$$
$${\text{C}}_{4i}^{{\text{C - S}}} = - \frac{{\cos^{2} \sqrt {\beta_{i} } + \sinh^{2} \sqrt {\beta_{i} } - \cos \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } }}{{\sinh \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } - \sin \sqrt {\beta_{i} } \cos \sqrt {\beta_{i} } }};$$
$${\text{C}}_{1i}^{{\text{S - S}}} = - 1,$$
$${\text{C}}_{2i}^{{\text{S - S}}} = 0,$$
$${\text{C}}_{3i}^{{\text{S - S}}} = \frac{{\sinh \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } - \cos \sqrt {\beta_{i} } \sinh \sqrt {\beta_{i} } }}{{\cos^{2} \sqrt {\beta_{i} } \sinh^{2} \sqrt {\beta_{i} } + \sin^{2} \sqrt {\beta_{i} } \cosh^{2} \sqrt {\beta_{i} } }},$$
$${\text{C}}_{4i}^{{\text{S - S}}} = \frac{{\cos \sqrt {\beta_{i} } \sin \sqrt {\beta_{i} } - \sin \sqrt {\beta_{i} } \cosh \sqrt {\beta_{i} } }}{{\cos^{2} \sqrt {\beta_{i} } \sinh^{2} \sqrt {\beta_{i} } + \sin^{2} \sqrt {\beta_{i} } \cosh^{2} \sqrt {\beta_{i} } }}.$$

Appendix B

See Fig. 7.

Fig. 7
figure 7

Method flowchart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., He, T. Elastoplastic nonlinear analysis of functionally graded beams utilizing the symplectic method. Arch Appl Mech 91, 4735–4750 (2021). https://doi.org/10.1007/s00419-021-02030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02030-z

Keywords

Navigation