Skip to main content
Log in

Effect of void shape and highly conducting boundary on 2D conductivity of porous materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the heat conductivity of two-dimensional (2D) media made of an arbitrarily thermal anisotropic material and containing pores with arbitrary shape and superconductive boundary is considered. In addition to the bulk behavior, the line conduction model is used for the boundary behavior. Such idealized mathematical model can be seen as the limit case of very thin material layer with very high conductivity. The fundamental heterogeneity problem in the micromechanics of a single void embedded in an infinite matrix with both boundary and bulk behavior is then investigated and solved with the complex variable and the Conformal Mapping (CM) techniques. The heterogeneity problem results are then used to obtain the effective heat conductivity of the porous material with different homogenization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan, B.-D., Meilink, S., Warren, G., Wynblatt, P.: Water adsorption and surface conductivity measurements on alpha-alumina substrates. IEEE Trans. Compon. Hybrids Manuf. Technol. 10(2), 247 (1987)

    Article  Google Scholar 

  2. Awakuni, Y., Calderwood, J.H.: Water vapour adsorption and surface conductivity in solids. J. Phys. D Appl. Phys. 5(5), 1038 (1972)

    Article  Google Scholar 

  3. Boyle, J., Jones, K.: The effects of CO, water vapor and surface temperature on the conductivity of a SnO\(_2\) gas sensor. J. Electron. Mater. 6, 717 (1977)

    Article  Google Scholar 

  4. Cox, D., Fryberger, T., Semancik, S.: Oxygen vacancies and defect electronic states on the SnO2(110)-1\(\times \) 1 surface. Phys. Rev. B 38, 2072 (1988)

    Article  Google Scholar 

  5. Williams, O., Jackman, R.: Surface conductivity on hydrogen terminated diamond. Semicond. Sci. Technol. 18, S34 (2003)

    Article  Google Scholar 

  6. Huy, H.P., Sanchez-Palencia, E.: Phénomènes de transmission à travers des couches minces de conductivitéélevée. J. Math. Anal. Appl. 47, 284 (1974)

    Article  MathSciNet  Google Scholar 

  7. Hashin, Z.: Thin interphase/imperfect interface in conduction. J. Appl. Phys. 89(4), 2261 (2001)

    Article  Google Scholar 

  8. Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708 (2006)

    Article  MathSciNet  Google Scholar 

  9. Eshelby, J.D., Peierls, R.E.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241(1226), 376 (1957)

    Article  MathSciNet  Google Scholar 

  10. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571 (1973)

    Article  Google Scholar 

  11. Torquato, S.: Random Heterogeneous Materials: Microstructure And Macroscopic Properties. Springer, Berlin (2001)

    MATH  Google Scholar 

  12. Mura, T.: Micromechanics of Defects in Solids, vol. 3. Springer, Berlin (1993)

    Google Scholar 

  13. Stroh, A.N.: Dislocations and cracks in anisotropic elasticity. Philos. Mag. J. Theor. Exp. Appl. Phys. 3(30), 625 (1958)

    MathSciNet  MATH  Google Scholar 

  14. Rao, K., Rao, M Bapu, Ariman, T.: Thermal stresses in plates with circular holes. Nucl. Eng. Des. 15, 97 (1971)

    Article  Google Scholar 

  15. Gao, C.F., Zhao, Y.T., Wang, M.Z.: An exact and explicit treatment of an elliptic hole problem in thermopiezoelectric media. Int. J. Solids Struct. 39(9), 2665 (2002)

    Article  Google Scholar 

  16. Zhang, A., Wang, B.: Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Eng. Fract. Mech. 151, 11 (2016)

    Article  Google Scholar 

  17. Chen, W.T.: Plane thermal stress at an insulated hole under uniform heat flow in an orthotropic medium. J. Appl. Mech. 34(1), 133 (1967)

    Article  Google Scholar 

  18. Hasebe, N., Inohara, S.: Stress analysis of a semi-infinite plate with an oblique edge crack. Ingenieur-Archiv 49, 51 (1980)

    Article  Google Scholar 

  19. Hasebe, N., Tomida, A., Nakamura, T.: Thermal stresses of a cracked circular hole due to uniform heat flux. J. Therm. Stresses 11, 381 (1988)

    Article  Google Scholar 

  20. Hasebe, N., Chen, Y.: Stress intensity solutions for the interaction between a hole edge crack and a line crack. Int. J. Fract. 77, 351 (1996)

    Article  Google Scholar 

  21. Chao, C., Shen, M.: Thermal stresses in a generally anisotropic body with an elliptic inclusion subject to uniform heat flow. J. Appl. Mech. 65, 51 (1998)

    Article  Google Scholar 

  22. Qin, Q.H.: General solutions for thermopiezoelectrics with various holes under thermal loading. Int. J. Solids Struct. 37(39), 5561 (2000)

    Article  Google Scholar 

  23. Vinh, P., Hasebe, N., Wang, X., Saito, T.: Interaction between a cracked hole and a line crack under uniform heat flux. Int. J. Fract. 131, 367 (2005). https://doi.org/10.1007/s10704-004-7138-3

    Article  MATH  Google Scholar 

  24. Jafari, M., Jafari, M.: Thermal stress analysis of orthotropic plate containing a rectangular hole using complex variable method. Eur. J. Mech. A. Solids 73, 212 (2019)

    Article  MathSciNet  Google Scholar 

  25. Gurtin, M.E., Murdoch, A Ian: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  26. Doan, T., Le-Quang, H., To, Q.D.: Effective elastic stiffness of 2D materials containing nanovoids of arbitrary shape. Int. J. Eng. Sci. 150, 103234 (2020)

    Article  MathSciNet  Google Scholar 

  27. Doan, T., Le-Quang, H., To, Q.D.: Coupled molecular dynamics and micromechanics study of planar elastic properties of graphene with void defects. Mech. Mater. 147, 103450 (2020)

    Article  Google Scholar 

  28. Muskhelishvili, N.: Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. Courier Corporation, New York (2008)

    Google Scholar 

  29. Neuber, H., Savin, G. N.: Stress Concentration around Holes. XI + 430 S. m. 208 Abb. u. 77 Tafeln. Oxford/London/New York/Paris 1961. Pergamon Press. Preis geb. 84 s. net. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 42(6), 265 (1962)

  30. Driscoll, T.: Algorithm 756; a MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Softw. 22, 168 (1996). https://doi.org/10.1145/229473.229475

    Article  MATH  Google Scholar 

  31. Le Quang, H., Bonnet, G., He, Q.C.: Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys. Rev. B 81, 64203 (2010)

    Article  Google Scholar 

  32. Yvonnet, J., He, Q.C., Toulemonde, C.: Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos. Sci. Technol. 68(13), 2818 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quy-Dong To.

Ethics declarations

Conflict of interest

We declare that we have no conflict interests in relation with the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions in transformed coordinates

For heat transfer problem, the temperature T must satisfy the following energy conservation equation of the matrix phase with thermal conductivity tensor \(\mathbf {K}^0 = \begin{bmatrix} K^0_{11} &{} 0 \\ 0 &{} K^0_{22} \end{bmatrix}\)

$$\begin{aligned} K^{0}_{11}\frac{\partial ^2 T}{\partial x^2} + K^{0}_{22}\frac{\partial ^2 T}{\partial y^2} = 0. \end{aligned}$$
(42)

In the conventional complex plane where \(z=x+i\sqrt{K^{0}_{11}/K^{0}_{22}}y\), the temperature T can be expressed in the following form

$$\begin{aligned} T=\mathfrak {R}\{ \varphi (z)\}=\frac{1}{2} (\varphi (z)+\overline{\varphi (z)}) \end{aligned}$$
(43)

where \(\varphi (z)\) is an analytical function of z. The heat flux q can be expressed by \(q = q_x - i\sqrt{K^{0}_{11}/K^{0}_{22}}q_y\) with

$$\begin{aligned}&q_x= -\frac{K^{0}_{11}}{2}[\varphi '(z)+ \overline{\varphi '(z)}],\quad q_y=-i\frac{\sqrt{K^{0}_{11}K^{0}_{22}}}{2}[\varphi '(z)- \overline{\varphi '(z)}]. \end{aligned}$$
(44)

Next, by introducing the new variable \(\zeta \) and by using the transformation \(z=\omega (\zeta )\), the function \(\varphi (z)\) becomes

$$\begin{aligned} \varphi (z)=\varphi (\omega (\zeta ))=\varphi _1(\zeta ). \end{aligned}$$
(45)

In general, the mapping function \(z=\omega (\zeta )\) is chosen to map a void plate with boundary \(\varGamma \) in z plane into the unit disk in \(\zeta \) plane (\(|\zeta |\le 1\)) and solve the problem with \(\zeta \) as variable.

On the unit circle mapped from \(\varGamma \), we pose \(\zeta =e^{-i\theta }\) with \(\theta \) running from 0 to \(2\pi \). This parameterization also guarantees the arc coordinate s on \(\varGamma \) goes in the positive (counter-clockwise) direction. Differential calculus yields the following result

$$\begin{aligned}&\text {d}\zeta =-i e^{-i\theta } d\theta =-i\zeta \text {d}\theta ,\quad {\text {d}}\bar{\zeta } =i e^{i\theta } d\theta =i\bar{\zeta } {\text {d}}\theta \nonumber \\&{\text {d}}z = \omega '(\zeta ) {\text {d}}\zeta = -i\omega '(\zeta ) \zeta \text {d}\theta ,\quad {\text {d}}s=|\text {d}z|=|\omega '(\zeta )|d\theta \end{aligned}$$
(46)

We can immediately obtain

$$\begin{aligned}&\frac{\text {d}\zeta }{{\text {d}}s} =-\frac{i\zeta }{|\omega '|},\quad \frac{\text {d}\bar{\zeta }}{{\text {d}}s} =\frac{i\bar{\zeta }}{|\omega '|},\quad \frac{\text {d}z}{{\text {d}}s}=\frac{i\omega '}{|\omega '|} \end{aligned}$$
(47)

and hence the three identities of (22, 23).

Appendix B: Detailed dimensions of voids

The details dimensions of all the voids are summarized in Fig. 8 where L is the basic dimension and for arbitrary shape, \(L_1=4.6L\) and \(L_2=2.5L\). All the results are to the value of L.

Fig. 8
figure 8

Void dimensions (a Circle, b square, c ellipse, d octagon, f arbitrary)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, T., Le-Quang, H. & To, QD. Effect of void shape and highly conducting boundary on 2D conductivity of porous materials. Arch Appl Mech 91, 4539–4552 (2021). https://doi.org/10.1007/s00419-021-02014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02014-z

Keywords

Navigation