Skip to main content
Log in

Large deformation analysis of two-dimensional visco-hyperelastic beams and frames

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This contribution aims at developing a formulation for the large viscoelastic deformation of hyperelastic beams and frames under various loading and boundary conditions. To do so, the kinematics of deformation in two-dimensional space is formulated and basic kinematics and kinetic quantities are introduced. The quasi-linear viscoelasticity theory is employed to capture the time-dependent behavior of the underlying material. The corresponding time integration scheme and the consistent tangent moduli are then presented. Because of the highly nonlinear nature of governing equations at the large regime of deformations including time dependency, a nonlinear finite element formulation in the total Lagrangian framework is developed. Several numerical examples are provided to investigate the applicability of derived formulations. It is observed that the formulation can successfully capture the relaxation and creep phenomena in visco-hyperelastic beams and frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Stokes, A.A., Shepherd, R.F., Morin, S.A., Ilievski, F., Whitesides, G.M.: A hybrid combining hard and soft robots. Soft Robot 1, 70–74 (2014)

    Article  Google Scholar 

  2. Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB \(4910\) polymer. Arch. Appl. Mech. 85, 523–537 (2015)

    Article  Google Scholar 

  3. Lewandowski, R., Wielentejczyk, P.: Analysis of dynamic characteristics of viscoelastic frame structures. Arch. Appl. Mech. 90, 147–171 (2020)

    Article  Google Scholar 

  4. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods I, derivations from the three-dimensional equations. Proc. R. Soc. Lond. A 337, 451–483 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods II, developments by direct approach. Proc. R. Soc. Lond. A 337, 485–507 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)

    MATH  Google Scholar 

  7. Bathe, K.J., Ramm, E., Wilson, E.L.: Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Meth. Eng. 9, 353–386 (1975)

    Article  MATH  Google Scholar 

  8. Noor, A.K., Peters, J.M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams. Int. J. Numer. Meth. Eng. 17, 615–631 (1981)

    Article  MATH  Google Scholar 

  9. Simo, J.C.: A finite strain beam formulation, the three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    Article  MATH  Google Scholar 

  10. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  11. Ibrahimbegović, A.: On the choice of finite rotation parameters. Comput. Methods Appl. Mech. Eng. 149, 49–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jelenić, G., Crisfield, M.A.: Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Methods Eng. 54, 1775–1788 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zupan, E., Saje, M., Zupan, D.: The quaternion-based three-dimensional beam theory. Comput. Methods Appl. Mech. Eng. 198, 3944–3956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Irschik, H., Gerstmayr, J.: A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Math. Comp. Model Dyn. 17, 19–29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sokolov, I., Krylov, S., Harari, I.: Extension of non-linear beam models with deformable cross sections. Comput. Mech. 56, 999–1021 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ortigosa, R., Gil, A.J., Bonet, J., Hesch, C.: A computational framework for polyconvex large strain elasticity for geometrically exact beam theory. Comput. Mech. 57, 277–303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 3241, 546–572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dadgar-Rad, F., Sahraee, S.: Large deformation analysis of fully incompressible hyperelastic curved beams. Appl. Math. Model. 93, 89–100 (2021)

    Article  MathSciNet  Google Scholar 

  21. Gutierrez-Lemini, D.: Engineering Viscoelasticity. Springer, New York (2014)

    Book  MATH  Google Scholar 

  22. Katsikadelis, J.T.: Generalized fractional derivatives and their applications to mechanical systems. Arch. Appl. Mech. 85, 1307–1320 (2015)

    Article  MATH  Google Scholar 

  23. Martin, O.: Nonlinear dynamic analysis of viscoelastic beams using a fractional rheological model. Appl. Math. Model. 43, 351–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pipkin, A.C., Rogers, T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)

    Article  MATH  Google Scholar 

  25. Christensen, R.M.: A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 762–768 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)

    Book  Google Scholar 

  27. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MATH  Google Scholar 

  28. Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  29. Le Tallec, P., Rahier, Ch., Kaiss, A.: Three-dimensional incompressible viscoelasticity in large strains formulation and numerical approximation. Comput. Methods Appl. Mech. Eng. 109, 233–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    Article  MATH  Google Scholar 

  31. Bonet, J.: Large strain viscoelastic constitutive models. Int. J. Solids Struct. 38, 2953–2968 (2001)

    Article  MATH  Google Scholar 

  32. Koprowski-Theiss, N., Johlitz, M., Diebels, S.: Compressible rubber materials: experiments and simulations. Arch. Appl. Mech. 82, 1117–1132 (2012)

    Article  Google Scholar 

  33. Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000)

    Article  MATH  Google Scholar 

  34. Holden, J.T.: On the finite deformation of thin viscoelastic beams. Int. J. Numer. Methods Eng. 5, 271–275 (1972)

    Article  MATH  Google Scholar 

  35. Yang, T.Y., Lianis, G.: Large displacement analysis of viscoelastic beams and frames by the finite element method. J. Appl. Mech. 41, 635–640 (1974)

    Article  Google Scholar 

  36. Baranenko, V.A.: Large displacements of viscoelastic beams. Int. J. Numer. Methods. Eng. 5, 271–275 (1980)

    Google Scholar 

  37. Chen, T.M.: The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic timoshenko beams. Int. J. Numer. Methods. Eng. 38, 509–522 (1995)

    Article  MATH  Google Scholar 

  38. Lee, U., Oh, H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)

    Article  MATH  Google Scholar 

  39. Lee, K.: Large deflection of viscoelastic fiber beams. Text. Res. J. 77, 47–51 (2007)

    Article  Google Scholar 

  40. Vaz, M.A., Caire, M.: On the large deflections of linear viscoelastic beams. Int. J. Non-Linear Mech. 45, 75–81 (2010)

    Article  Google Scholar 

  41. Muliana, A.: Large deformations of nonlinear viscoelastic and multi-responsive beams. Int. J. Non-Linear Mech. 71, 152–164 (2015)

    Article  Google Scholar 

  42. Drapaca, C., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elast. 85, 65–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nekouzadeh, A., Pryse, K.M., Elson, E.L., Genin, G.M.: A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40, 3070–3078 (2007)

    Article  Google Scholar 

  44. Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta. Mech. 224, 2169–2183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dadgar-Rad, F., Firouzi, N.: Time-dependent response of incompressible membranes based on quasi-linear viscoelasticity theory. Int. J. Appl. Mech. 13, 2150036 (2021)

    Article  Google Scholar 

  46. Puso, M.A., Weiss, J.A.: Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. 120, 62–70 (1998)

    Article  Google Scholar 

  47. De Pascalis, R., Abrahams, I.D., Parnell, W.J.: On nonlinear viscoelastic deformations: a reappraisal of Fung’s quasi-linear viscoelastic model. Proc. R. Soc. A 470, 20140058 (2014)

    Article  Google Scholar 

  48. De Pascalis, R., Parnell, W.J., Abrahams, I.D., Shearer, T., Daly, D.M., Grundy, D.: The inflation of viscoelastic balloons and hollow viscera. Proc. R. Soc. A 474, 20180102 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhi, Y., Muliana, A., Rajagopal, K.R.: Quasi-linear viscoelastic modeling of light-activated shape memory polymers. J. Intell. Mater. Syst. Struct. 1, 1–16 (2017)

    MATH  Google Scholar 

  50. Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)

    MATH  Google Scholar 

  51. Sansour, C.: Large strain deformations of elastic shells, constitutive modelling and finite element analysis. Comput. Methods Appl. Mech. Eng. 161, 1–18 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory, an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)

    Article  MATH  Google Scholar 

  53. Dadgar-Rad, F.: A two dimensional electro-beam model for large deformation analysis of dielectric polymer actuators. Int. J. Solids Struct. 165, 104–114 (2019)

    Article  Google Scholar 

  54. Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, New York (2000)

    MATH  Google Scholar 

  55. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  56. Simo, J.C., Hughes, T.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  57. Crisfield, M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Volume 1, Essentials, vol. 1. Wiley, Chichester (1991)

    MATH  Google Scholar 

  58. Warriner, W.C.: Designing with Delrin. Mech. Eng. 81, 60–64 (1959)

    Google Scholar 

  59. Williams, F.W.: An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q. J. Mech. Appl. Maths. 17, 451–469 (1964)

    Article  MATH  Google Scholar 

  60. Wood, R.D., Zienkiewicz, O.C.: Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput. Struct. 7, 725–735 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  61. Jetteur, P.H., Cescotto, S., de Goyet, V.D., Frey, F.: Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory. Comput. Struct. 17, 129–137 (1983)

    Article  MATH  Google Scholar 

  62. Akoussah, E., Beaulieu, D., Dhatt, G.: Curved beam element via penalty/mixed formulation for nonlinear in-plane analysis. Commun. Appl. Numer. Methods. 2, 617–623 (1986)

    Article  MATH  Google Scholar 

  63. Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzam Dadgar-Rad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadgar-Rad, F., Firouzi, N. Large deformation analysis of two-dimensional visco-hyperelastic beams and frames. Arch Appl Mech 91, 4279–4301 (2021). https://doi.org/10.1007/s00419-021-02008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02008-x

Keywords

Navigation