Skip to main content
Log in

A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this short note, we develop a new class of “quasi-linear” viscoelastic models wherein the linearized strain is expressed in terms of a nonlinear measure of the stress. The class of models that is developed could be regarded as counterpart to the class of models referred to popularly as “quasi-linear” models, proposed by Fung to describe the response of viscoelastic bodies; however, now the strain is expressed as an integral of a nonlinear measure of the stress. The class of models that are developed can describe response that cannot be described by the class of models proposed by Fung, and moreover, these models are more reasonable from the point of view of causality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burgers, J.M.: Mechanical considerations—model systems—phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity, 2nd edn. Nordemann Publishing Company, Inc., New York (1939) (Prepared by the committee of viscosity of the academy of sciences at Amsterdam)

  2. Bustamante, R., Rajagopal, K.R.: A note on plane strain and plane stress problems for a new class of elastic bodies. Math. Mech. Solids 15, 229–238 (2010)

    Google Scholar 

  3. Bustamante R., Rajagopal K.R.: Soultions of some simple boundary value problems within the context of a new class of elastic materials. Int J. Non-linear. Mech 46, 376–386 (2011)

    Article  Google Scholar 

  4. Bustamante R., Rajagopal K.R.: A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bustamante R., Rajagopal K.R.: On the inhomogeneous shearing of a new class of elastic bodies. Math. Mech. Solids 17, 762–778 (2012b)

    Article  Google Scholar 

  6. Ferry J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  7. Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)

    Google Scholar 

  8. Green A.E., Rivlin R.S.: Mechanics of non-linear materials with memory: part 1. Arch. Ration. Mech. Anal. 1, 1–21 (1965)

    Article  MathSciNet  Google Scholar 

  9. Green A.E., Rivlin R.S., Spencer A.J.M.: Mechanics of materials with memory: part 2. Arch. Ration. Mech. Anal. 3, 82 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Green A.E., Rivlin R.S.: Mechanics of materials with memory: part 3. Arch. Ration. Mech. Anal. 3, 387–404 (1959)

    Article  MathSciNet  Google Scholar 

  11. Horgan C.O., Saccomandi G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 71, 152–169 (2006)

    Article  Google Scholar 

  12. Johnson G.A., Tramaglini D.M., Levine R.E., Ohno K., Choi N.Y., Woo S.L.Y.: Tensile and viscoelastic properties of human patellar tendon. J. Orthop. Res. 12, 796–803 (1994)

    Article  Google Scholar 

  13. Johnson G.A., Livesay G.A., Woo S.L.Y, Rajagopal K.R.: A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118, 221–226 (1996)

    Article  Google Scholar 

  14. Lockett F.J.: Non-linear Viscoelastic Solids. Academic Press, London (1972)

    Google Scholar 

  15. Lockett F.J.: Creep and stress-relaxation experiments for non-linear materials. Int. J. Eng. Sci. 3, 59–75 (1965)

    Article  Google Scholar 

  16. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. A 157, 26–78 (1866)

    Google Scholar 

  17. Muliana, A., Rajagopal, K.R., Wineman, A.S.: On the response of Burgers’ fluid and its generalizations with pressure dependent moduli. Mech. Time Depend. Mater. (Accepted for publication)

  18. Noll, W. : On the Foundations of Mechanics of Continuous Media. Carnegie Institute of Technology, Department of Mathematics Report 17 (1957)

  19. Noll W.: A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 48, 1–50 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  21. Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within three dimensional continuum mechanics framework. Proc. R. Soc. A 462, 749–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–591 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pipkin A.C., Rogers T.G.: A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 16, 59–72 (1968)

    Article  MATH  Google Scholar 

  24. Prusa V., Rajagopal K.R.: Jump conditions in stress relaxation and creep experiments of Burgers type fluids—A study in the application of Colombeau algebra of generalized functions. Zeitschrift für angewandte Mathematik und Physik 62, 707–740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Prusa V., Rajagopal K.R.: On implicit constitutive relations for materials with fading memory. J. New-Newton. FluidMech. 181, 22–29 (2012)

    Article  Google Scholar 

  26. Rajagopal, K.R.: Rethinking the development of constitutive equations (2013) (To appear)

  27. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rajagopal K.R.: Elasticity of elasticity. Zeitschrift für angewandte Mathematik und Physik 58, 309–417 (2007)

    Article  MATH  Google Scholar 

  29. Rajagopal K.R.: Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16, 122–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A Mat. 460, 631–651 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rajagopal K.R., Wineman A.S.: A quasi-correspondence principle for quasi-linear viscoelastic solids. Mech. Time Depend. Mater. 12, 1–14 (2008)

    Article  Google Scholar 

  33. Rivlin R.S.: Large elastic deformations of isotropic materials I. Fundam. Concepts 240, 459–490 (1948)

    MathSciNet  MATH  Google Scholar 

  34. Schapery R.A.: An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2, 407–425 (1966)

    Article  Google Scholar 

  35. Schapery R.A.: On the characterization of non-linear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  36. Schapery, R.A.: On a thermodynamic constitutive theory application to various nonlinear materials. In: Proceedings of the IUTAM Symposium on Thermoelasticity. Springer, Wien (1970)

  37. Schapery R.A.: Non-linear viscoelastic and visoplastic constitutive equations based on thermodynamics. Mech. of Time Depend. Mater 1, 209–240 (2011)

    Article  Google Scholar 

  38. Thomson, W.: On the elasticity and viscosity of metals. Proc. R. Soc. Lond. 14, 289–297 (1865)

    Google Scholar 

  39. Truesdell C.: The Elements of Continuum Mechanics. Springer, New York (1966)

    MATH  Google Scholar 

  40. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, vol. III/3, 602 pp. Springer, Berlin (1965) (Second Edition, 1992)

  41. Voigt, W.: Über innere Reibung fester Körper, insbesondere der Metalle. Annalen der Physik 283, 671–693 (1892)

  42. Wineman A.S.: Non-linear viscoelastic solids, a review. Math. Mech. Solids 14, 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wineman A.S.: Large axi-symmetric deformation of a non-linear viscoelastic membrane due to spinning. J. Appl. Mech. Trans. ASME 39, 946–952 (1972)

    Article  Google Scholar 

  44. Wineman A.S.: Large axi-symmetric deformation of a non-linear viscoelastic membrane by lateral pressure. Trans. Soc. Rheol. 20, 203–225 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muliana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muliana, A., Rajagopal, K.R. & Wineman, A.S. A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mech 224, 2169–2183 (2013). https://doi.org/10.1007/s00707-013-0848-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0848-8

Keywords

Navigation