Skip to main content
Log in

A couple stress of peristaltic motion of Sutterby micropolar nanofluid inside a symmetric channel with a strong magnetic field and Hall currents effect

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The current study investigates the peristaltic transport of an incompressible micropolar non—Newtonian nanofluid following the Sutterby model. The heat and mass transfer inside the two-dimensional symmetric vertical channel is considered. The system is affected by a strong magnetic field together with thermal radiation, couple stress, chemical reaction, Joule heating, heat generation, Dufour, Soret and Hall current effects. The governing equations of motion are analytically solved by utilizing the long wavelength and low Reynolds number approximations. Furthermore, the resulted boundary—value problem is solved by means of the Homotopy perturbation method (HPM). An illustration of the influence of the various physical parameters in the foreign distributions; such as Hall currents, magnetic field, Sutterby, couple stress, Brownian motion, thermophoresis and slip parameters is obtained throughout a set of graphs and tables. It is observed that the axial velocity enhances with the increase in the Sutterby parameter. Furthermore, the temperature decreases with the larger values of a heat transfer Biot number. While, the concentration enlarges with the increase in the values of mass transfer Biot numbers. Moreover, the trapping phenomenon is discussed throughout a set of figures. This depicts the variation of the streamlines under the impact of couple stress, amplitude ratio, and magnetic field parameters. It is noticed that the size of the trapped bolus increases with the increase in the foregoing three parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(\underline{{A_{1} }}\) :

The first Rivilin Ericksen tensor

\(B\) :

Material constant

\(a\) :

Wave amplitude

\(B_{0}\) :

Magnetic field strength

\(B_{i1} ,B_{i2}\) :

Heat transfer Biot numbers

\(B_{r}\) :

Brinkman number

\(B_{t}\) :

Volumetric coefficient of expansion.

\(C\) :

Fluid concentration

\(C_{0}\) :

Mass concentration of the left wall

\(C_{1}\) :

Mass concentration of the right wall

\(c_{f}\) :

Specific heat parameter of fluid

\(c_{p}\) :

Specific heat parameter of nanoparticle

\(c_{s}\) :

Concentration susceptibility

\(c\) :

Speed of wave

\(D\) :

Coefficient of mass diffusivity

\(D_{a}\) :

Darcy number

\(D_{B}\) :

Brownian diffusion coefficient

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(D_{u}\) :

Dufour number

\(d\) :

Half-channel width

\(E_{c}\) :

Eckert number

\(e\) :

Electric charge

\(f\) :

Dimensionless concentration

\(\underline{g} = \left( { - g,0,0} \right)\) :

Acceleration gravity

\(h_{1}\) :

Heat transfer coefficients on the left wall

\(h_{2}\) :

Heat transfer coefficients on the right wall

\(\underline{J}\) :

Current density

\(J_{1}\) :

Microinertia constant

\(k^{*}\) :

Thermophoretic coefficient

\(K_{1}\) :

Vortex viscosity coefficient

\(K_{c}\) :

Thermal conductivity

\(K_{m}\) :

Constant of chemical reaction

\(K_{p}\) :

Permeability of porous medium

\(K_{R}\) :

Mean absorption coefficient

\(K_{T}\) :

Thermal diffusion ratio

\(L_{e}\) :

Lewis number

\(L_{n}\) :

Nano Lewis number

\(L_{1}\) :

Mass transfer coefficients on the left wall

\(L_{2}\) :

Mass transfer coefficients on the right wall

\({\text{M}}\) :

Magnetic field parameter

\(M_{i1} ,M_{i2}\) :

Mass transfer Biot numbers

\(m\) :

The power index of the material

\(m_{1}\) :

Hall parameter

\(n\) :

Constant associated the couple stress

\(n_{e}\) :

Number density of electrons

\(N_{b}\) :

Brownian motion parameter

\(N_{t}\) :

Thermophoresis parameter

\(p\) :

Fluid pressure

\(P_{r}\) :

Prandtl number

\(\underline{q}\) :

Radiative heat flux

\(Q_{0}\) :

Constant of heat addition and absorption.

\(R_{N}\) :

Nanoparticle Rayleigh number

\(R_{T}\) :

Thermal Rayleigh number

\(R_{m}\) :

Basic density Rayleigh number

\(R_{c}\) :

Non-dimension chemical reaction parameter

\(R_{d}\) :

Radiation parameter

\(R_{e}\) :

Reynold’s number

\(\underline{S}\) :

Cauchy stress tensor

\(S_{r}\) :

Soret number

\(t\) :

Time

\(T\) :

Fluid temperature

\(T_{0}\) :

Temperature of the left wall

\(T_{1}\) :

Temperature of the right wall

\(T_{m}\) :

Mean fluid temperature

\(T_{r}\) :

Reference temperature

\(u\) :

Axial velocity component in the wave frame

\({\text{v}}\) :

Transverse velocity component in the wave frame

\(\underline{{\text{V}}}\) :

Velocity vector

\({\text{V}}_{{\text{T}}}\) :

Thermophertic velocity

\({\text{(x,y)}}\) :

Cartesian coordinate system in the wave frame

\({\text{x}}\) :

Axial coordinate

\({\text{y}}\) :

Transverse coordinate

\(\alpha_{1}\) :

Non-dimensional slip parameter for nanoparticles

\(\alpha_{f}\) :

Thermal diffusivity of the fluid

\(\alpha^{*} ,\beta^{*}\) :

Micropolar material

\(\beta_{1}\) :

Mean absorption coefficient,

\(\beta_{M}\) :

Micropolar dimensionless viscosity

\(\beta_{s}\) :

Sutterby parameter

\(\Gamma\) :

The material constants

\(\gamma\) :

Couple stress, non-dimensional parameter

\(\gamma_{m}\) :

Spin-gradient viscosity

\(\overline{\gamma }_{m}\) :

Microrotation parameter

\(\delta\) :

Wave number

\(\varepsilon\) :

Amplitude ratio parameter

\(\eta {\text{(x,t)}}\) :

Displacement of the right wall

\(- \eta {\text{(x,t)}}\) :

Displacement of the left wall

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Wave length

\(\mu\) :

Fluid viscosity

\(\nu\) :

Kinematic viscosity

\(\rho_{f}\) :

Fluid density

\(\rho_{p}\) :

Nanoparticle density

\(\left( {\rho c} \right)_{f}\) :

Heat capacity of the fluid

\(\left( {\rho c} \right)_{p}\) :

Effective heat capacity of the nanoparticlematerial

\(\sigma\) :

Electrical conductivity

\(\sigma^{ * }\) :

Stefan Boltzmann constant

\(\tau\) :

Ratio between the effective heat & fluid capacities

\(\tau^{ * }\) :

Thermophoretic parameter

\(\Phi\) :

Dimensionless nanoparticle phenomena

\(\phi\) :

Nanoparticle phenomena

\(\phi_{0}\) :

Nanoparticle at the left wall

\(\phi_{1}\) :

Nanoparticle at the right wall

\(\xi\) :

The second invariant strain tensor

\(\psi \left( {x,y} \right)\) :

Stream function

References

  1. Abou-zeid, M.: Effects of thermal - diffusion and viscous dissipation on peristaltic flow of micropolar non-newtonian nanofluid: application of homotopy perturbation method. Results Phys. 6, 481–495 (2016)

    Article  Google Scholar 

  2. Hayat, T., Tanveer, A., Yasmin, H., Alsaedi, A.: Effects of convection conditions and chemical reaction on peristaltic flow of eyring-powell fluid. Appl. Bionics Biomechs 11, 221–233 (2014)

    Article  Google Scholar 

  3. Shaaban, A.A., Abou-zeid, M.Y.: Effects of heat and mass transfer on mhd peristaltic flow of a non-newtonian fluid through a porous medium between two coaxial cylinders. Math. Prob. Eng. 2013, 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  4. Nowar, K.: Peristaltic flow of a Non-Newtonian fluid under the effect of Hall current and porous medium. Math. Prob. Eng. 2014, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  5. Akram, J., Akbar, NSh., Tripathi, D.: Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-021-10562-3

    Article  Google Scholar 

  6. Tripathi, D., Prakash, J., Reddy, M.G., Misra, J.C.: Numerical simulation of double diffusive convection and electroosmosis during peristaltic transport of a micropolar nanofluid on an asymmetric microchannel. J. Therm. Anal. Calorim. 143, 2499–2514 (2021)

    Article  Google Scholar 

  7. Akram, J., Akbar, NSh., Tripathi, D.: Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel. Chin. J. Phys. 68, 745–763 (2020)

    Article  MathSciNet  Google Scholar 

  8. Tripathi, D., Prakash, J., Reddy, M.G., Kumar, R.: Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01906-0

    Article  Google Scholar 

  9. Prakash, J., Tripathi, D., Bég, O.A.: Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis. Appl. Nanosci. (2020). https://doi.org/10.1007/s13204-020-01286-1

    Article  Google Scholar 

  10. Ayub, S., Hayat, T., Asghar, S., Ahmad, B.: Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid. Results Phys. 7, 3687–3695 (2017)

    Article  Google Scholar 

  11. Hayat, T., Ayub, S., Alsaedi, A.: Homogeneous-heterogeneous reactions in curved channel with porous medium. Results Phys. 9, 1455–1461 (2018)

    Article  Google Scholar 

  12. Eldabe, N.T.M., Elogail, M.A., Ghaly, A.Y., Sallam, S.N., Elagamy, K., Younis, Y.M.: (2015) Hall effect on peristaltic flow of third order fluid in a porous medium with heat and mass transfer. J. Appl. Maths. Phys. 3, 1138–1150 (2015)

    Article  Google Scholar 

  13. Hayat, T., Rafiq, M., Alsaedi, A.: Investigation of Hall current and slip conditions on peristaltic transport of Cu-Water nanofluid in a rotating medium. Int. J. Thermal Sci. 112, 129–141 (2017)

    Article  Google Scholar 

  14. Eldabe, N.T.M., Motiamid, G.M., Mohamed, M.A.A., Mohamed, Y.M.: Effects of Hall currents with heat and mass transfer on the peristaltic transport of a casson fluid through a porous medium in a vertical circular cylinder. Therm. Sci. 24(2B), 1067–1081 (2020)

    Article  Google Scholar 

  15. Hayat, T., Zahir, H., Tanveer, A., Alsaedi, A.: Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid. J. Magn. Magn. Mater. 407, 321–327 (2016)

    Article  Google Scholar 

  16. Eldabe, N.T.M., Elogail, M.A., Ghaly, A.Y., Sallam, S.N., Elagamy, K., Younis, Y.M.: Peristaltic pumping of a conducting sisko fluid through porous medium with heat and mass transfer. Am. J. Comput. Math. 2015(5), 304–316 (2015)

    Article  Google Scholar 

  17. Hayat, T., Hina, Z., Mustafa, M., Alsaedi, A.: Peristaltic flow of sutterby fluid channel with radiative heat transfer and compliant walls: a numerical study. Results Phys. 6, 805–810 (2016)

    Article  Google Scholar 

  18. Abbasi, F.M., Hayat, T., Alsaedi, A.: Effects of inclined magnetic field and Joule heating in mixed convective peristaltic transport of non-Newtonian fluids. Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 501–514 (2015)

    Google Scholar 

  19. Hayat, T., Ayub, S., Alsaedi, A., Tanveer, A., Ahmad, B.: Numerical simulation for the peristaltic activity of Sutterby fluid with modified Darcy’s law. Results Phys 7, 762–768 (2017)

    Article  Google Scholar 

  20. Akbar, N.S., Nadeem, S.: Nano sutterby fluid model for the peristaltic flow in small intestines. J. Comput. Theor. Nanosci. 10, 2491–2499 (2013)

    Article  Google Scholar 

  21. Eringen, A.C.: Microcontinuum Field Theories: Fluent Media, vol. 2. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Eldabe, N.T., Abou-zeid, M.Y.: Magnetohydrodynamic peristaltic flow with heat and mass transfer of micropolar biviscosity fluid through a porous medium between two co-axial tubes. Arab. J. Sci. Eng. 39, 5045–5062 (2014)

    Article  Google Scholar 

  23. Srinivas, S., Reddy, P.B.A., Prasad, B.S.R.V.: Non-Darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction. Heat Transf. Asian Res. 44(2), 172–187 (2015)

    Article  Google Scholar 

  24. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9(9), 1709–1715 (1966)

    Article  Google Scholar 

  25. Hina, H., Mustafa, M., Hayat, T.: On the exact solution for peristaltic flow of couple-stress fluid with wall properties. Bulg. Chem. Commus. 47(1), 30–37 (2015)

    Google Scholar 

  26. Hayat, T., Awais, M., Safdar, A., Hendi, A.A.: Unsteady three dimensional flow of couple stress fluid over a stretching surface with chemical reaction. Nonlinear Anal. Model. Control 17(1), 47–59 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ramesh, K.: Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Comput. Methods Progs. Biomed. 135, 1–14 (2016)

    Article  Google Scholar 

  28. Hina, S., Hayat, T., Asghar, S., Hendi, A.A.: Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction. Int. J. Heat Mass Transfer 55, 3386–3394 (2012)

    Article  Google Scholar 

  29. Akram, J., Akbar, NSh., Tripathi, D.: Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model. Microvasc. Res. 132, 1–10 (2020)

    Article  Google Scholar 

  30. Sheu, L.J.: Linear stability of convection in a viscoelastic nanofluid layer. Int. J. Mechanical Mechs. Eng. 5(10), 1970–1976 (2011)

    Google Scholar 

  31. Hayat, T., Tanveer, A., Yasmin, H., Alsaadi, F.: Simultaneous effects of Hall current and thermal deposition in peristaltic transport of Eyring-Powell fluid. Int. J. Biomaths. 8(2), 1550024-1-1550024–28 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Hayat, T., Ayub, S., Tanveer, A., Alsaedi, A.: Numerical simulation for MHD Williamson fluid utilizing modified Darcy’s law. Results Phys. 10, 751–759 (2018)

    Article  Google Scholar 

  33. Shapiro, A.H., Jaffirin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynold’s number. J. Fluid Mech. 37(4), 799–825 (1969)

    Article  Google Scholar 

  34. Mustafa, M., Hina, S., Hayat, T., Alsaedi, A.: Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. Int. J. Heat Mass Transfer 55, 4871–4877 (2012)

    Article  Google Scholar 

  35. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3), 257–262 (1999)

    Article  MathSciNet  Google Scholar 

  36. Hayat, T., Nisar, Z., Ahmad, B., Yasmin, H.: Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J. Magn. Magn. Mater. 395, 48–58 (2015)

    Article  Google Scholar 

  37. Abd-Alla, A.M., Abo-Dahab, S.M., Al-Simery, R.D.: Effect of rotationon peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field. J. Magn. Magn. Mater. 348, 33–43 (2013)

    Article  Google Scholar 

  38. Kumar, P.M., Kavitha, A., Saravana, R.: Hall effects on peristaltic flow of couple stress fluid in a vertical asymmetric channel. IOP Conf. Series: Materials Sci. Eng. 263, 1–18 (2017)

    Google Scholar 

  39. Hayat, T., Zahir, H., Tanveer, A., Alsaedi, A.: Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel. Results Phys. 8, 1291–1300 (2018)

    Article  Google Scholar 

  40. Hayat, T., Shafique, M., Tanveer, A., Alsaedi, A.: Slip and Joule heating effects on radiative peristaltic flow of hyperbolic tangent nanofluid. Int. J. Heat Mass Transfer 112, 559–567 (2017)

    Article  Google Scholar 

  41. Abou-zeid, M.Y., Mohamed, M.A.A.: Homotopy Perturbation Method For Creeping Flow of Non-Newtonian power-law nanofluid in a nonuniform inclined channel with peristalsis. Z. Naturforsch. 72(10), 899–907 (2017)

    Article  Google Scholar 

  42. El-dabe, N.T.M., Mostapha, D.R.: MHD peristaltic flow of a Walter’s-B fluid with mild stenosis through a porous medium in endoscope. J. Porous Media 22(9), 1109–1130 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmeen M. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dabe, N.T.M., Moatimid, G.M., Mohamed, M.A.A. et al. A couple stress of peristaltic motion of Sutterby micropolar nanofluid inside a symmetric channel with a strong magnetic field and Hall currents effect. Arch Appl Mech 91, 3987–4010 (2021). https://doi.org/10.1007/s00419-021-01990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01990-6

Keywords

Navigation