Skip to main content
Log in

The effects of the pressure work and Hall currents in the MHD peristaltic flow of Bingham–Papanastasiou nanofluid through porous media

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article is concerned with the influences of the pressure work and Hall currents on the motion of a non-Newtonian nanofluid with heat and mass transfer inside a vertical symmetric channel. The fluid conforms to the Bingham–Papanastasiou model. The walls of the channel are assumed to be flexible, movable and sinusoidal. Thermal radiation, heat generation/absorption and chemical reaction are thus considered. Concerning the assumptions of the long wavelength and low Reynolds number, the resulting equations are solved by utilising the homotopy perturbation method (HPM). The succeeding complex computations are clarified for the stream flow, temperature and concentration distributions. A set of graphs is plotted to illustrate the effects of various physical parameters of the problem at hand. It is found that as the Bingham factor is increased, both axial velocity and temperature are also increased. Additionally, it is observed that the stress growth exponent has a dual influence on the axial velocity as well as the size of the trapped bolus. The behaviour of the left wall of the channel is different from that of the right wall. When the pressure work and Hall current coefficients increase, both temperature and pressure gradient decrease. The Brownian motion and thermophoresis parameters have different influence on the nanoparticle concentration distribution. Furthermore, it is shown that the heat transfer coefficient is a decreasing function in both Hall and thermal radiation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H S Lew, Y C Fung and C B Lowenstein, J. Biomech. 4(4), 297 (1971)

    Article  Google Scholar 

  2. T W Latham, Fluid motion in a peristaltic pump, M.S. Thesis (MIT, Cambridge, 1966), http://hdl.handle.net/1721.1/17282

  3. A H Shapiro, M Y Jaffrin and S L Weinberg, J. Fluid Mech. 37, 799 (1969)

    Article  ADS  Google Scholar 

  4. E F Elshehawey, A M Sobh and E M Elbarbary, J. Phys. Soc. Jpn. 69, 401 (2000)

    Article  ADS  Google Scholar 

  5. K Ramesh and M Devakar, Chin. J. Phys. 55, 825 (2017)

    Article  Google Scholar 

  6. N T El-dabe, G M Moatimid and A Sayed, J. Adv. Res.  Dyn. Control Syst. 10,1132 (2018)

    Google Scholar 

  7. T Hayat, H Zahir, A Tanveer and A Alsaedi, J. Magn. Magn. Mater. 407, 321 (2016)

    Article  ADS  Google Scholar 

  8. E M Abo-Eldahab, E I Barakat and K I Nowar, Int. J. Appl. Math. Phys. 2, 145 (2010)

    Google Scholar 

  9. T Hayat, M Shafique, A Tanveer and A Alsaedi, Int. J. Heat Mass Transfer 112, 559 (2017)

    Article  Google Scholar 

  10. R Rajesh and Y R Gowd, Chem. Eng. Trans. 71, 997 (2018), https://doi.org/10.3303/CET1871167

  11. M Rafiq, H Yasmin, T Hayat and F Alsaadi, Chin. J. Phys. 60, 208 (2019)

    Article  Google Scholar 

  12. Y Joshi and B Gebhart, Int. J. Heat Mass Transfer 24, 1577 (1981)

    Article  Google Scholar 

  13. T Akhter and M A Alim, Nonlin. Anal: Model. Contr. 15, 287 (2010), https://doi.org/10.15388/NA.15.3.1432

  14. M A Alim, K H Kabir and L S Andallah, AIP Conf. Proc. 1754, 050032 (2016)

    Google Scholar 

  15. E M Elbashbeshy, N T Eldabe, I K Youssef and A M Sedki, Therm. Sci. 22, 401 (2018), https://doi.org/10.2298/TSCI150601207

    Article  Google Scholar 

  16. E C Bingham, Fluidity and plasticity (McGraw-Hill, New York, 1922)

    Google Scholar 

  17. T C Papanastasiou, J. Rheol. 31, 385 (1987)

    Article  ADS  Google Scholar 

  18. T Hayat, S Farooq, M Mustafa and B Ahmad, Results Phys. 7, 2000 (2017)

    Article  ADS  Google Scholar 

  19. N A Khan and F Sultan, J. Appl. Mech. Tech. Phys. 59, 638 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. S Akram, S Nadeem and A Hussain, J. Magn. Magn. Mater. 362, 184 (2014)

    Article  ADS  Google Scholar 

  21. P Lakshminarayana, K Vajravelu, G Sucharitha and S Sreenadh, AMNS 3, 41 (2018)

    Article  Google Scholar 

  22. K V Wong and O D Leon, Adv. Mech. Eng. 2, 519659 (2010), 11, 373 (2017)

  23. K Nowar, Appl. Math. Inf. Sci. 11, 373 (2017)

    Article  Google Scholar 

  24. S U S Choi and J A Eastman, ASME Int. Mech. Eng.Cong. Exp. 66, 99 (1995), https://www.osti.gov/servlets/purl/196525

  25. K Nowar, Math. Probl. Eng. 2014, 1 (2014)

    Article  MathSciNet  Google Scholar 

  26. N T Eldabe, O M Abo-Seida, A A Abo Seliem, A A Elshekhipy and N Hegazy, Microsyst. Technol. 24, 3751 (2018)

  27. M Y Abou-zeid and M A A Mohamed, Z. Naturforsch. A 72, 899 (2017)

  28. S I Abdelsalam and M M Bhatti, RSC Adv. 8, 7904 (2018)

    Article  ADS  Google Scholar 

  29. J H He, Comp. Meth. Appl. Mech. Eng. 178, 257 (1999)

    Article  Google Scholar 

  30. W M Rohsenow, J P Hartnett and Y I Cho, Handbook of heat transfer, 3rd edn (McGraw-Hill, New York, 1998)

    Google Scholar 

  31. S A Patel and R P Chhabra, J. Thermophys. Heat Transf. 30, 152 (2015), https://doi.org/10.2514/1.T4578

    Article  Google Scholar 

  32. T Hayat, S Asghar, A Tanveer and A Alsaedi, J. Mol. Liq. 240, 504 (2017)

    Article  Google Scholar 

  33. V P Rathod and D Laxmi, Int. J. Biomath. 7, 1 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldabe, N.T., Moatimid, G.M. & Sayed, A. The effects of the pressure work and Hall currents in the MHD peristaltic flow of Bingham–Papanastasiou nanofluid through porous media. Pramana - J Phys 95, 76 (2021). https://doi.org/10.1007/s12043-021-02091-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02091-3

Keywords

PACS Nos

Navigation