Skip to main content
Log in

Sensitivity analysis-based full-scale bounds estimation for 2-D interval bi-modular problems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The full-scale bounds estimation for 2-D bi-modular problem with interval uncertain constitutive parameters is realized by means of sensitivity analysis. An efficient FE model is presented to solve the deterministic 2-D bi-modular problem by complementing a shear modulus identical with the coaxial condition required by the constitutive relationship, and the equations to calculate both the first- and second-order derivatives of displacements with respect to constitutive parameters are derived. When the interval scale of uncertain constitutive parameters is relatively small, two algorithms are developed for the bounds estimation by using the first-/second-order Taylor series approximation and interval arithmetic; when the interval scale is large, a rigorous bounds estimation can be achieved by using the first-order derivatives and a global searching technique. In addition, two second-order Taylor series approximation-based algorithms are proposed to reduce the computational expense in the process of optimization for bounds estimation. With the consideration of expansion order of Taylor series, interval scale of uncertainty, ratio of \(E^-/E^+\), etc., numerical examples are presented to illustrate the accuracy and efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambartsumyan, S.A.: Elasticity Theory of Different Moduli (R.F. Wu, Y.Z. Zhang, Trans.), China Railway Publishing House, Beijing (1986)

  2. He, X.T., Zheng, Z.L., Sun, J.Y., Li, Y.M., Chen, S.L.: Convergence analysis of a finite element method based on different moduli in tension and compression. Int. J. Solids Struct. 46(20), 3734–3740 (2009)

    Article  Google Scholar 

  3. Du, Z l, Guo, X.: Variational principles and the related bounding theorems for bi-modulus materials. J. Mech. Phys. Solids 73, 183–211 (2014). https://doi.org/10.1016/j.jmps.2014.08.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, J.Y., Xia, S., Moon, M.W., Oh, K.H., Kim, K.S.: Folding wrinkles of a thin film stiff layer on a soft substrate. Proc. Math. Phys. Eng. Sci 468(2140), 932–953 (2012)

    Google Scholar 

  5. Rosakis, P., Notbohm, J., Ravichandran, G.: A model for compression-weakening materials and the elastic fields due to contractile cells. J. Mech. Phys. Solids 85, 16–32 (2015)

    Article  MathSciNet  Google Scholar 

  6. Notbohm, J., Lesman, A., Rosakis, P., Tirrell, D.A., Ravichandran, G.: Microbuckling of fibrin provides a mechanism for cell mechanosensing. J. R. Soc. Interface. https://doi.org/10.1098/rsif.2015.0320

  7. He, X.T., Chen, S.L., Sun, J.Y.: Elasticity solution of simple beams with different modulus under uniformly distributed load. Eng. Mech. 24(10), 51–56 (2007)

    Google Scholar 

  8. He, X.T., Zheng, Z.L., Chen, S.L.: Approximate elasticity solution of bending-compression column with different tension-compression moduli. J. Chongqing Univ. (Nat. Sci. Edn.) 31(03), 339–343 (2008)

    Google Scholar 

  9. He, X.T., Cao, L., Sun, J.Y., Zheng, Z.L.: Application of a biparametric perturbation method to large-deflection circular plate problems with a bimodular effect under combined loads. J. Math. Anal. Appl. 420(1), 48–65 (2014)

    Article  MathSciNet  Google Scholar 

  10. Yao, W.J., Ye, Z.M.: Analytical solution of bending-compression column using different tension-compression moduli. Appl. Math. Mech. 25(9), 983–993 (2004)

    Article  Google Scholar 

  11. Yao, W.J., Ye, Z.M.: Analytical solution for bending beam subject to lateral force with different moduli. Appl. Math. Mech. 25(10), 1107–1117 (2004)

    Article  Google Scholar 

  12. Zhang, Y.Z., Wang, Z.F.: The finite element method for elasticity with different moduli in tension and compression. Comput. Struct. Mech. Appl. 6(1), 236–246 (1989)

  13. Yang, H.T., Wu, R.F., Yang, Kj, Zhang, Yz: Solution to problem of dual extension–compression elastic modulus with initial stress method. J. Dalian Univ. Tech. 32(1), 35–39 (1992). in Chinese

  14. Yang, H .T., YANG, K .J., WU, R .F.: Solution of 3-d elastic dual extension compression modulus problems using initial stress technique. J. Dalian Univ. Tech. 39(4), 478–482 (1999). in Chinese

    Google Scholar 

  15. Liu, X.B., Zhang, Y.Z.: Modulus of elasticity in shear and accelerate convergence of different extension compression elastic modulus finite element method. J. Dalian Univ. Tech. 40(5), 527–530 (2000). in Chinese

    MATH  Google Scholar 

  16. Liu, X.B., Meng, Q.C.: On the convergence of finite element method with different extension–compression elastic modulus. J. Beijing Univ. Aeronaut. Astronaut. 28(2), 231–234 (2002). in Chinese

    Google Scholar 

  17. Yang, H.T., Zhu, Y.L.: Solving elasticity problems with bi-modulus via a smoothing technique. Chin. J. Comput. Mech. 23(1), 19–23 (2006). in Chinese

    Google Scholar 

  18. Yang, H.T., Wang, B.: An analysis of longitudinal vibration of bimodular rod via smoothing function approach. J. Sound Vib. 317(3), 419–431 (2008)

    Article  Google Scholar 

  19. Du, Z.L., Zhang, Y.P., Zhang, Ws, Guo, X.: A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int. J. Solids Struct. 100–101, 54–73 (2016)

    Article  Google Scholar 

  20. Zhang, H.W., Zhang, L., Gao, Q.: An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput. Struct. 89(23), 2352–2360 (2011)

    Article  Google Scholar 

  21. Zhang, L., Gao, Q., Zhang, H.W.: An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures. Int. J. Mech. Sci. 70(5), 57–68 (2013)

    Article  Google Scholar 

  22. Zhang, L., Zhang, H.W., Wu, J., Yan, B.: A stabilized complementarity formulation for nonlinear analysis of 3d bimodular materials. Acta. Mech. Sin. 32(3), 481–490 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, Ht, Li, Yx, Xue, Yn: Interval uncertainty analysis of elastic bimodular truss structures. Inverse Probl. Sci. Eng. 23(4), 578–589 (2015)

    Article  Google Scholar 

  24. Cai, K., Qin, Q.H., Luo, Z., Zhang, A.J.: Robust topology optimisation of bi-modulus structures. Comput. Aided Des. 45(10), 1159–1169 (2013). https://doi.org/10.1016/j.cad.2013.05.002

    Article  Google Scholar 

  25. Hoffman, F.O., Hammonds, J.S.: Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal. 14(5), 707–712 (1994)

    Article  Google Scholar 

  26. Xiu, Db, Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002). https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  27. Xiu, Db: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  29. Wang, C., Qiu, Z.P., Yang, Y.W.: Collocation methods for uncertain heat convection–diffusion problem with interval input parameters. Int. J. Therm. Sci. 107, 230–236 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.04.012

  30. Xia, B.Z., Yu, D.J.: Interval analysis of acoustic field with uncertain-but-bounded parameters. Computers & Structures 112–113(12), 235–244 (2012)

  31. Qiu, Z.P., Chen, S.H., Elishakoff, I.: Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters. Chaos Solitons Fractals 7(3), 425–434 (1996)

    Article  Google Scholar 

  32. Qiu, Z.P., Elishakoff, I.: Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput. Methods Appl. Mech. Eng. 152(3), 361–372 (1998)

    Article  Google Scholar 

  33. Mcwilliam, S.: Anti-optimisation of uncertain structures using interval analysis. Comput. Struct. 79(4), 421–430 (2001)

    Article  Google Scholar 

  34. Chen, S.H., Lian, H.D., Yang, X w: Interval static displacement analysis for structures with interval parameters. Int. J. Numer. Meth. Eng. 53(2), 393–407 (2002)

  35. Fujita, K., Takewaki, I.: An efficient methodology for robustness evaluation by advanced interval analysis using updated second-order taylor series expansion. Eng. Struct. 33(12), 3299–3310 (2011)

    Article  Google Scholar 

  36. Huang, R., Qiu, Z.P.: Interval perturbation finite element method for structural static analysis. Eng. Mech. 30(12), 36–42 (2013)

    Google Scholar 

  37. Muhanna, R.L., Mullen, R.L.: Uncertainty in mechanics problems-interval-based approach. J. Eng. Mech. 127(6), 557–566 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(557)

    Article  Google Scholar 

  38. Muhanna, R.L., Mullen, R.L., Zhang, H.: Penalty-based solution for the interval finite-element methods. J. Eng. Mech. 131(10), 1102–1111 (2005). https://doi.org/10.1061/(asce)0733-9399(2005)131:10(1102)

    Article  Google Scholar 

  39. Pereira, S.C., Mello, U.T., Ebecken, N.F.F., Muhanna, R.L.: Uncertainty in thermal basin modeling: an interval finite element approach. Reliable Comput. 12(6), 451–470 (2006)

    Article  MathSciNet  Google Scholar 

  40. Muhanna, R.L., Zhang, H., Mullen, R.L.: Interval finite elements as a basis for generalized models of uncertainty in engineering mechanics. Reliable Comput. 13(2), 173–194 (2006). https://doi.org/10.1007/s11155-006-9024-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Muhanna, R.L., Zhang, H., Mullen, R.L.: Combined axial and bending stiffness in interval finite-element methods. J. Struct. Eng. 133(12), 1700–1709 (2007). https://doi.org/10.1061/(asce)0733-9445(2007)133:12(1700)

    Article  Google Scholar 

  42. Su, J., Zhu, Y., Wang, J., Li, A., Yang, G.: An improved interval finite element method based on the element-by-element technique for large truss system and plane problems. Adv. Mech. Eng. 10(4), 168781401876915 (2018). https://doi.org/10.1177/1687814018769159

    Article  Google Scholar 

  43. Qiu, Z.P., Wang, X.J., Chen, J.Y.: Exact bounds for the static response set of structures with uncertain-but-bounded parameters. Int. J. Solids Struct 43(21), 6574–6593 (2006)

  44. Qiu, Z.P., Xia, Y.Y., Yang, J.L.: The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem. Comput. Methods Appl. Mech. Eng. 196(49), 4965–4984 (2007)

  45. Qiu, Z.P., Lv, Z.: The vertex solution theorem and its coupled framework for static analysis of structures with interval parameters. Int. J. Numer. Meth. Eng. 112(7), 711–736 (2017)

  46. Elishakoff, I., Miglis, Y.: Novel parameterized intervals may lead to sharp bounds. Mech. Res. Commun. 44, 1–8 (2012)

    Article  Google Scholar 

  47. Elishakoff, I., Miglis, Y.: Overestimation-free computational version of interval analysis. Int. J. Comput. Methods Eng. Sci Mech. 13(5), 319–328 (2012). https://doi.org/10.1080/15502287.2012.683134

    Article  MathSciNet  Google Scholar 

  48. Impollonia, N., Muscolino, G.: Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput. Methods Appl. Mech. Eng. 200(21–22), 1945–1962 (2011). https://doi.org/10.1016/j.cma.2010.07.019

    Article  MATH  Google Scholar 

  49. Muscolino, G., Sofi, A.: Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech. Syst. Signal Process. 37(1–2), 163–181 (2013). https://doi.org/10.1016/j.ymssp.2012.06.016

    Article  Google Scholar 

  50. Muscolino, G., Santoro, R., Sofi, A.: Explicit frequency response functions of discretized structures with uncertain parameters. Comput. Struct. 133, 64–78 (2014). https://doi.org/10.1016/j.compstruc.2013.11.007

    Article  Google Scholar 

  51. Muscolino, G., Santoro, R., Sofi, A.: Explicit sensitivities of the response of discretized structures under stationary random processes. Probab. Eng. Mech. 35, 82–95 (2014). https://doi.org/10.1016/j.probengmech.2013.09.006

    Article  Google Scholar 

  52. Santoro, R., Muscolino, G., Elishakoff, I.: Optimization and anti-optimization solution of combined parameterized and improved interval analyses for structures with uncertainties. Comput. Struct. 149, 31–42 (2015)

    Article  Google Scholar 

  53. Sofi, A., Romeo, E.: A novel interval finite element method based on the improved interval analysis. Comput. Methods Appl. Mech. Eng. 311, 671–697 (2016)

    Article  MathSciNet  Google Scholar 

  54. Qiu, Z.P., Qi, W.C.: Collocation interval finite element method. Chin. J. Theor. Appl. Mech. 43(03), 496–504 (2011). in Chinese

  55. Wang, C., Qiu, Z.P., Xu, M.H.: Collocation methods for fuzzy uncertainty propagation in heat conduction problem. Int. J. Heat Mass Transf. 107, 631–639 (2017)

  56. Zhu, J.J., Qiu, Z.P.: Interval analysis for uncertain aerodynamic loads with uncertain-but-bounded parameters. J. Fluids Struct. 81, 418–436 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.05.009

  57. Long, X.Y., Jiang, C., Han, X., Tang, J.C., Guan, F.J.: An enhanced subinterval analysis method for uncertain structural problems. Appl. Math. Model. 54, 580–593 (2018). https://doi.org/10.1016/j.apm.2017.10.017

  58. Fu, C., Cao, L., Tang, J., Long, X.: A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters. Comput. Struct. 197, 58–69 (2018). https://doi.org/10.1016/j.compstruc.2017.12.001

    Article  Google Scholar 

  59. Wu, F., Gong, M., Ji, J., Peng, G., Yao, L., Li, Y., Zeng, W.: Interval and subinterval perturbation finite element-boundary element method for low-frequency uncertain analysis of structural-acoustic systems. J. Sound Vib. 462, 114939 (2019). https://doi.org/10.1016/j.jsv.2019.114939

    Article  Google Scholar 

  60. Verhaeghe, W., Desmet, W., Vandepitte, D., Moens, D.: Interval fields to represent uncertainty on the output side of a static FE analysis. Comput. Methods Appl. Mech. Eng. 260, 50–62 (2013). https://doi.org/10.1016/j.cma.2013.03.021

    Article  MathSciNet  MATH  Google Scholar 

  61. Ni, B., Jiang, C.: Interval field model and interval finite element analysis. Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2019.112713

  62. Ni, B., Wu, P., Li, J., Jiang, C.: A semi-analytical interval method for response bounds analysis of structures with spatially uncertain loads. Finite Elem. Anal. Des. (2020). https://doi.org/10.1016/j.finel.2020.103483

  63. Moens, D., Hanss, M.: Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elem. Anal. Des. 47(1), 4–16 (2011)

    Article  Google Scholar 

  64. Adhikari, S., Khodaparast, H.H.: A spectral approach for fuzzy uncertainty propagation in finite element analysis. Fuzzy Sets Syst. 243(243), 1–24 (2014)

    Article  MathSciNet  Google Scholar 

  65. Mendes, M.A.A., Ray, S., Pereira, J.M.C., Pereira, J.C.F., Trimis, D.: Quantification of uncertainty propagation due to input parameters for simple heat transfer problems. Int. J. Therm. Sci. 60(1), 94–105 (2012)

    Article  Google Scholar 

  66. Dym, C.L., Shames, I.H.: Solid mechanics. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6034-3

    Book  MATH  Google Scholar 

  67. Ran, C.J., Yang, H.T.: An orthogonal polynomial expansion based numerical method for solving interval bi-modular problems (to be published) (2019)

  68. Beer, F.P., Johnston, J.E. Russell, D.J.T., Mazurek, D.F.: Transformations of stress and strain. In: Mechanics of materials, 6th edn, chapter 7. McGraw-Hill, pp 438–511 (2010)

  69. Ran, C.J., Yang, H.T., Zhang, G.Q.: A gradient based algorithm to solve inverse plane bimodular problems of identification. J. Comput. Phys. 355, 78–94 (2018)

  70. Xue, Y.N., Yang, H.T.: Interval estimation of convection–diffusion heat transfer problems. Numer. Heat Transf. Part B Fundam. 64(3), 263–273 (2013). https://doi.org/10.1080/10407790.2013.797316

  71. Gao, W., Wu, D., Song, C m, Tin-Loi, F., Li, X j: Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47(7), 643–652 (2011). https://doi.org/10.1016/j.finel.2011.01.007

    Article  MathSciNet  Google Scholar 

  72. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  73. Rao, S.S., Berke, L.: Analysis of uncertain structural systems using interval analysis. AIAA J. 35(4), 727–735 (1997)

    Article  Google Scholar 

  74. Hanss, M.: The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst. 130(3), 277–289 (2002). https://doi.org/10.1016/S0165-0114(02)00045-3

    Article  MathSciNet  MATH  Google Scholar 

  75. Degrauwe, D., Lombaert, G., De Roeck, G.: Improving interval analysis in finite element calculations by means of affine arithmetic. Comput. Struct. 88(3), 247–254 (2010)

    Article  Google Scholar 

  76. The MathWorks, Inc., Global Optimization Toolbox User’s Guide(R2018A) (2018)

  77. The MathWorks, Inc., Global Optimization Toolbox User’s Guide(R2018A) (2018). https://ww2.mathworks.cn/help/pdf_doc/gads/gads_tb.pdf

  78. The MathWorks, Inc., Optimization Toolbox User’s Guide (R2018A) (2018)

  79. Nocedal, J., Wright, S.J.: Sequential quadratic programming. In: Numerical Optimization, 2nd edn, Ch. 18, pp 529–562. Springer (2006)

Download references

Acknowledgements

The research leading to this paper is funded by NSF [11972109, 11572068] and NKBRSF [2015CB057804]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Derivatives of \(\tilde{{\varvec{A}}}^b\) with respect to the bi-modular constitutive parameters.

Appendix A. Derivatives of \(\tilde{{\varvec{A}}}^b\) with respect to the bi-modular constitutive parameters.

Since \(\mu ^+\) and \(\mu ^-\) are related via Eq. (3), there are only three independent variables involved in the calculation of derivatives of \(\tilde{{\varvec{A}}}^b\); thus, two cases, i.e., (1) \(E^+\), \(E^-\) and \(\mu ^+\) are independent and (2) \(E^+\), \(E^-\) and \(\mu ^-\) are independent, which are considered in the derivation.

Assume \(E^+\), \(E^-\) and \(\mu ^+\) are independent variables,

$$\begin{aligned} \mu ^- = \mu ^+ \frac{E^-}{E^+} \end{aligned}$$
(A.1)

When \(\sigma _1^p \ge 0\) and \(\sigma _2^p \ge 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \frac{1}{E^+} \begin{bmatrix} 1 &{} \quad -\mu ^+ &{} \quad 0 \\ -\mu ^+ &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2(1+\mu ^+) \\ \end{bmatrix} \end{aligned}$$
(A.2)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^+ }&= \frac{1}{(E^+)^2 } \begin{bmatrix} -1 &{} \quad \mu ^+ &{} \quad 0 \\ \mu ^+ &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2(1+\mu ^+) \\ \end{bmatrix} , \end{aligned}$$
(A.3a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial \mu ^+ }&= \frac{1}{ E^+ } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad \quad 0 &{} \quad 0 \\ 0 &{} \quad \quad 0 &{} \quad 2 \\ \end{bmatrix} , \quad \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^- } = {\varvec{0}} . \end{aligned}$$
(A.3b)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = - \frac{2}{(E^+)^3} \begin{bmatrix} -1 &{} \quad \mu ^+ &{} \quad 0 \\ \mu ^+ &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2(1+\mu ^+) \\ \end{bmatrix} , \end{aligned}$$
(A.4a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^+ } = \frac{1}{(E^+)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.4b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = {\varvec{0}} , \end{aligned}$$
(A.4c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^+ } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^+)^2 } = {\varvec{0}} . \end{aligned}$$
(A.4d)

When \(\sigma _1^p \ge 0\) and \(\sigma _2^p < 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \begin{bmatrix} \frac{1}{E^+} &{} \quad -\frac{\mu ^+}{E^+} &{} \quad 0 \\ -\frac{\mu ^+}{E^+} &{} \quad \frac{1}{E^-} &{} \quad 0 \\ 0&{} \quad 0&{} \quad \frac{ 2 \sigma _1^p }{ \left( \sigma _1^p - \sigma _2^p \right) E^+ } - \frac{ 2 \sigma _2^p }{ \left( \sigma _1^p - \sigma _2^p \right) E^-} + 2 \frac{ \mu ^+ }{ E^+ } \\ \end{bmatrix} \end{aligned}$$
(A.5)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^+}&= \frac{1}{(E^+)^2 } \begin{bmatrix} -1 &{} \quad \mu ^+ &{} \quad 0 \\ \mu ^+ &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad - \frac{ 2 \sigma _1^p }{ \sigma _1^p - \sigma _2^p } - 2 \mu ^+ \\ \end{bmatrix} , \end{aligned}$$
(A.6a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^-}&= \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{ 2 \sigma _2^p }{ \sigma _1^p - \sigma _2^p } \\ \end{bmatrix} , \end{aligned}$$
(A.6b)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial \mu ^+}&= \frac{1}{ E^+ } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \\ \end{bmatrix} . \end{aligned}$$
(A.6c)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = - \frac{2}{(E^+)^3} \begin{bmatrix} -1 &{} \quad \mu ^+ &{} \quad 0 \\ \mu ^+ &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad - \frac{ 2 \sigma _1^p }{ \sigma _1^p - \sigma _2^p } - 2 \mu ^+ \\ \end{bmatrix}, \end{aligned}$$
(A.7a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^+ } = \frac{1}{(E^+)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix} , \end{aligned}$$
(A.7b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = -\frac{2}{(E^-)^3} \begin{bmatrix} 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{ 2 \sigma _2^p }{ \sigma _1^p - \sigma _2^p } \\ \end{bmatrix}, \end{aligned}$$
(A.7c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^+ } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^+)^2 } = {\varvec{0}} . \end{aligned}$$
(A.7d)

When \(\sigma _1^p < 0\) and \(\sigma _2^p < 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \begin{bmatrix} \frac{1}{E^-} &{} \quad -\frac{\mu ^+}{E^+} &{} \quad 0 \\ -\frac{\mu ^+}{E^+} &{} \quad \frac{1}{E^-} &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \frac{ 1 }{ E^- } + 2 \frac{ \mu ^+ }{ E^+ } \\ \end{bmatrix} \end{aligned}$$
(A.8)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^+ }&= \frac{1}{(E^+)^2 } \begin{bmatrix} 0 &{} \quad \mu ^+ &{} \quad 0 \\ \mu ^+ &{} 0 &{} 0 \\ 0 &{} \quad 0 &{} \quad - 2 \mu ^+ \\ \end{bmatrix} , \end{aligned}$$
(A.9a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^-}&= \frac{1}{(E^-)^2 } \begin{bmatrix} -1 &{} \quad 0 &{} \quad \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix} , \end{aligned}$$
(A.9b)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial \mu ^+}&= \frac{1}{ E^+ } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \\ \end{bmatrix} . \end{aligned}$$
(A.9c)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = - \frac{2}{(E^+)^3} \begin{bmatrix} 0 &{} \quad \mu ^+ &{} 0 \\ \mu ^+ &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad - 2 \mu ^+ \\ \end{bmatrix}, \end{aligned}$$
(A.10a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^+ } = \frac{1}{(E^+)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix} , \end{aligned}$$
(A.10b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = -\frac{2}{(E^-)^3} \begin{bmatrix} -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.10c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^+ } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^+)^2 } = {\varvec{0}} . \end{aligned}$$
(A.10d)

Assume \(E^+\), \(E^-\) and \(\mu ^-\) are independent variables,

$$\begin{aligned} \mu ^+ = \mu ^- \frac{E^+}{E^-} \end{aligned}$$
(A.11)

When \(\sigma _1^p \ge 0\) and \(\sigma _2^p \ge 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \begin{bmatrix} \frac{1}{E^+} &{} \quad -\frac{\mu ^-}{E^-} &{} \quad 0 \\ -\frac{\mu ^-}{E^-} &{} \quad \quad \frac{1}{E^+} &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \frac{ 1 }{ E^+ } + 2 \frac{ \mu ^- }{ E^- } \\ \end{bmatrix} \end{aligned}$$
(A.12)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^+ }&= \frac{1}{(E^+)^2 } \begin{bmatrix} -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix} , \end{aligned}$$
(A.13a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^- }&= \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad \mu ^- &{} \quad 0 \\ \mu ^- &{} 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \mu ^- \\ \end{bmatrix} , \end{aligned}$$
(A.13b)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial \mu ^- }&= \frac{1}{ E^- } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \\ \end{bmatrix}. \end{aligned}$$
(A.13c)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = - \frac{2}{(E^+)^3} \begin{bmatrix} -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.14a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = -\frac{2}{(E^-)^3} \begin{bmatrix} 0 &{} \quad \mu ^- &{} \quad 0 \\ \mu ^- &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad \quad 0 &{} \quad -2 \mu ^- \\ \end{bmatrix} , \end{aligned}$$
(A.14b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^- } = \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{}\quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.14c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^-)^2 } = {\varvec{0}} . \end{aligned}$$
(A.14d)

When \(\sigma _1^p \ge 0\) and \(\sigma _2^p < 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \begin{bmatrix} \frac{1}{E^+} &{} \quad -\frac{\mu ^-}{E^-} &{} \quad 0 \\ -\frac{\mu ^-}{E^-} &{} \quad \frac{1}{E^-} &{}\quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{ 2 \sigma _1^p }{ \left( \sigma _1^p - \sigma _2^p \right) E^+ } - \frac{ 2 \sigma _2^p }{ \left( \sigma _1^p - \sigma _2^p \right) E^- } + 2 \frac{ \mu ^- }{ E^- } \\ \end{bmatrix} \end{aligned}$$
(A.15)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^+}&= \frac{1}{(E^+)^2 } \begin{bmatrix} -1 &{} \quad 0 &{}\quad 0 \\ 0 &{} \quad 0 &{}\quad 0 \\ 0 &{} \quad 0 &{}\quad - \frac{ 2 \sigma _1^p }{ \sigma _1^p - \sigma _2^p } \\ \end{bmatrix} , \end{aligned}$$
(A.16a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^-}&= \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad \mu ^- &{} \quad 0 \\ \mu ^- &{}\quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{}\quad \frac{ 2 \sigma _2^p }{ \sigma _1^p - \sigma _2^p } - 2 \mu ^- \\ \end{bmatrix} , \end{aligned}$$
(A.16b)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial \mu ^-}&= \frac{1}{ E^- } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \\ \end{bmatrix}. \end{aligned}$$
(A.16c)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = - \frac{2}{(E^+)^3} \begin{bmatrix} -1 &{} \quad 0 &{} \quad \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad - \frac{ 2 \sigma _1^p }{ \sigma _1^p - \sigma _2^p } \\ \end{bmatrix}, \end{aligned}$$
(A.17a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = -\frac{2}{(E^-)^3} \begin{bmatrix} 0 &{} \quad \mu ^- &{} \quad 0 \\ \mu ^- &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad \frac{ 2 \sigma _2^p }{ \sigma _1^p - \sigma _2^p } - 2 \mu ^- \\ \end{bmatrix} , \end{aligned}$$
(A.17b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^- } = \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.17c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^-)^2 } = {\varvec{0}} . \end{aligned}$$
(A.17d)

When \(\sigma _1^p < 0\) and \(\sigma _2^p < 0\),

$$\begin{aligned} \tilde{{\varvec{A}}}^b = \begin{bmatrix} \frac{1}{E^-} &{} \quad -\frac{\mu ^-}{E^-} &{} \quad 0 \\ -\frac{\mu ^-}{E^-} &{} \quad \frac{1}{E^-} &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \frac{ 1 + \mu ^- }{ E^- } \\ \end{bmatrix} \end{aligned}$$
(A.18)

Then,

$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial E^-}&= \frac{1}{(E^-)^2 } \begin{bmatrix} -1 &{} \mu ^- &{} 0 \\ \mu ^- &{} -1 &{} 0 \\ 0 &{} 0 &{} -2(1+\mu ^-) \\ \end{bmatrix} , \end{aligned}$$
(A.19a)
$$\begin{aligned} \frac{\partial \tilde{{\varvec{A}}}^b}{\partial \mu ^-}&= \frac{1}{ E^- } \begin{bmatrix} 0 &{} \quad -1 &{} \quad 0 \\ -1 &{} \quad \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 2 \\ \end{bmatrix} , \quad \frac{\partial \tilde{{\varvec{A}}}^b}{ \partial E^+ } = {\varvec{0}} . \end{aligned}$$
(A.19b)

Furthermore,

$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^-)^2 } = -\frac{2}{(E^-)^3} \begin{bmatrix} -1 &{} \quad \mu ^- &{} \quad 0 \\ \mu ^- &{} \quad -1 &{} \quad 0 \\ 0 &{} \quad 0 &{} -2(1+\mu ^-) \\ \end{bmatrix} , \end{aligned}$$
(A.20a)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^- \partial \mu ^- } = \frac{1}{(E^-)^2 } \begin{bmatrix} 0 &{} \quad 1 &{} \quad 0 \\ 1 &{} \quad \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad -2 \\ \end{bmatrix}, \end{aligned}$$
(A.20b)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (E^+)^2 } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial E^- } = {\varvec{0}} , \end{aligned}$$
(A.20c)
$$\begin{aligned}&\frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial E^+ \partial \mu ^- } = {\varvec{0}} , \quad \frac{\partial ^2 \tilde{{\varvec{A}}}^b}{ \partial (\mu ^-)^2 } = {\varvec{0}} . \end{aligned}$$
(A.20d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, C., Yang, H. Sensitivity analysis-based full-scale bounds estimation for 2-D interval bi-modular problems. Arch Appl Mech 91, 3011–3034 (2021). https://doi.org/10.1007/s00419-021-01945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01945-x

Keywords

Navigation