Skip to main content
Log in

A seismic metamaterial concept with very short resonators using depleted uranium

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Depleted uranium (DU) is a metal of very high mass density and, other than a few specialized uses, is treated as a waste product of the uranium enrichment process. To take advantage of its high mass density, we propose a novel application of this metal in elastic/seismic metamaterials. Such use can not only broaden the range of design possibilities for elastic metamaterials but can also give more meaning to the disposition of DU. Five different design concepts are modeled and analyzed using numerical techniques. The band structure comparison of the concepts shows that very low-frequency band gaps in the range of seismic wave frequencies can be achieved with very simple configurations, smaller geometries, and feasible placing arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. United States Nuclear Regulatory Commission. (2017). § 40.4 Definitions. Available: https://www.nrc.gov/reading-rm/doc-collections/cfr/part040/part040-0004.html

  2. World Nuclear Association. (2016). Uranium and Depleted Uranium. Available: https://world-nuclear.org/information-library/nuclear-fuel-cycle/uranium-resources/uranium-and-depleted-uranium.aspx

  3. IAEA, "Depleted uranium," IAEA, International Atomic Energy Agency (IAEA) 2001, Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:32004852.

  4. Bleise, A., Danesi, P.R., Burkart, W.: Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64(2), 93–112 (2003). https://doi.org/10.1016/S0265-931X(02)00041-3

    Article  Google Scholar 

  5. Lu, M.L., Li, H.Y., Li, Y.F., Lu, Y.Y., Wang, H.S., Wang, X.H.: Exploring the Toxicology of Depleted Uranium with Caenorhabditis elegans. Acs Omega 5(21), 12119–12125 (2020). https://doi.org/10.1021/acsomega.0c00380

    Article  Google Scholar 

  6. OECD and N. E. Agency, "Management of Depleted Uranium," 2001, Available: https://www.oecd-ilibrary.org/content/publication/9789264294998-en.

  7. Yoshimura, H.R., Ludwigsen, J.S., McAllaster, M.E.: Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems. Sandia National Labs., Albuquerque, NM (United States), United StatesSAND-94-0826; TTC-1311 ON: DE97001520; TRN: 97:002995, (1996), Available: https://www.osti.gov/biblio/414329-use-depleted-uranium-metal-cask-shielding-high-level-waste-storage-transport-disposal-systems.

  8. Brown, C., Croff, A.G., Haire, M.J.: Beneficial Uses of Depleted Uranium," Oak Ridge National Lab., TN (United States), United StatesCONF-970830–1, 1997, Available: https://www.osti.gov/biblio/629312-beneficial-uses-depleted-uranium.

  9. USDOE, "Trends in the use of Depleted Uranium," NMAB-275, 1971, Available: https://www.osti.gov/biblio/4648381-trends-use-depleted-uranium.

  10. Betti, M.: Civil use of depleted uranium. J. Environ. Radioact., 64(2–3), 113–119 (2003), Art. no. Pii s0265-931x(02)00042-5. https://doi.org/10.1016/s0265-931x(02)00042-5

  11. Derrington, S.B., Thompson, J.E., Clinard, J.A.: Fabrication options for depleted uranium shielding components of waste container systems. Trans. Am. Nuclear Soc., vol. 71, 1994.

  12. Hopf, J.E.: Conceptual design report for a transportable DUCRETE spent fuel storage cask system. USDOE, Washington, DC (United States)INEL-95/0167, 1995, Available: https://www.osti.gov/biblio/106411-conceptual-design-report-transportable-ducrete-spent-fuel-storage-cask-system.

  13. McConnell, P., Salzbrenner, R., Wellman, G.W., Sorenson, K.B.: An Evaluation of the Use of Depleted Uranium as a Structural Component for Transport Casks. Nuclear Technol. 104(2), 171–181 (1993). https://doi.org/10.13182/NT93-A34881

  14. Lessing, P.A., Gillman, H.: DU-AGG pilot plant design study. Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)INEL-96/0266, 1996, Available: https://www.osti.gov/biblio/366038-du-agg-pilot-plant-design-study.

  15. Lessing, P.A.: "Development of `DUCRETE`," USDOE, Washington, DC (United States), United StatesINEL-94/0029, 1995, Available: https://www.osti.gov/biblio/366558-development-ducrete.

  16. Orlov, V.K., Metelkin, Y.A., Maslov, A.A.: Extra-heavy concrete and cermet: protective materials with enhanced gamma-ray absorption. At. Energ. 117(4), 243–250 (2015). https://doi.org/10.1007/s10512-015-9917-5

    Article  Google Scholar 

  17. Cardarelli, F.: Materials Handbook - A Concise Desktop Reference. Springer-Verlag, London (2008)

    Google Scholar 

  18. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    Article  Google Scholar 

  19. Labeyrie, A.: Hypertelescopes: The Challenge of Direct Imaging at High Resolution. In: Mary, D., Theys, C., Aime, C. (eds.) New Concepts in Imaging: Optical and Statistical Models. EAS Publications Series, vol. 59, pp. 5–23. Cedex A, E D P Sciences (2013)

    Google Scholar 

  20. Pu et al. M.B.: Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102(13), 4 (2013). Art. no. 131906. https://doi.org/10.1063/1.4799162

  21. Hamamda et al. M.: Atom "Meta-Optics": Negative-Index Media for Matter Waves in the nm wavelength range. In: 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference. pp. 2448–2449, New York, Ieee (2009).

  22. Jiang et al. Z.H.: An Isotropic 8.5 MHz Magnetic Meta-Lens. In: 2011 Ieee International Symposium on Antennas and Propagation. IEEE Antennas and Propagation Society International Symposium, pp. 1151-1154. New York, Ieee (2011)

  23. Galdi, V., Pierro, V., Castaldi, G., Engheta, N.: Genetically optimized metasurface pairs for wideband out-of-phase mutual response. Ieee Antennas Wireless Propag. Lett. 7, 788–791 (2008). https://doi.org/10.1109/lawp.2008.2005739

    Article  Google Scholar 

  24. Boutin, C., Schwan, L., Dietz, M.S.: Elastodynamic metasurface: Depolarization of mechanical waves and time effects. J. Appl. Phys. 117(6), 8 (2015), Art. no. 064902. https://doi.org/10.1063/1.4908135

  25. Colombi, A., Colquitt, D., Roux, P., Guenneau, S., Craster, R.V.: A seismic metamaterial: The resonant metawedge. Sci. Rep. 6, 6 (2016), Art. no. 27717. https://doi.org/10.1038/srep27717

  26. Kim, S.H., Das, M.P.: Artificial seismic shadow zone by acoustic metamaterials. Modern Phys. Lett. B, 27(20), 9 (2013), Art. no. 1350140. https://doi.org/10.1142/s0217984913501406

  27. Palermo, A., Krodel, S., Marzani, A., Daraio, C.: Engineered metabarrier as shield from seismic surface waves. Sci. Rep. 6, 10 (2016), Art. no. 39356. https://doi.org/10.1038/srep39356

  28. Hussein, M.I., Frazier, M.J.: Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332(20), 4767–4774 (2013). https://doi.org/10.1016/j.jsv.2013.04.041

    Article  Google Scholar 

  29. Basone, F., Wenzel, M., Bursi, O.S., Fossetti, M.: Finite locally resonant Metafoundations for the seismic protection of fuel storage tanks. Earthq. Eng. Struct. Dyn. 48(2), 232–252 (2019). https://doi.org/10.1002/eqe.3134

    Article  Google Scholar 

  30. Li, B., Liu, Y.Q., Tan, K.T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandw. Struct. Mater. 21(6), 1880–1905 (2019). https://doi.org/10.1177/1099636217727144

    Article  Google Scholar 

  31. Walser, R.M.: Electromagnetic metamaterials. In: Lakhtakia, A., Weiglhofer, W.S., Hodgkinson, I.J. (eds.) Complex Mediums Ii: Beyond Linear Isotropic Dielectrics. Proceedings of the Society of Photo-Optical Instrumentation Engineers Spie, vol. 4467, pp. 1–15. Bellingham, Spie-Int Soc Optical Engineering (2001)

    Chapter  Google Scholar 

  32. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70(5), 4 (2004), Art. no. 055602. https://doi.org/10.1103/PhysRevE.70.055602

  33. Zhou, X.M., Hu, J., Hu, G.K.: Transparency effect induced by elastic metamaterials. In: Kong, J.A. (ed.) Piers 2008 Hangzhou: Progress in Electromagnetics Research Symposium, Vols I and Ii, Proceedings. Progress in Electromagnetics Research Symposium, pp. 963–966. Electromagnetics Acad, Cambridge (2008)

    Google Scholar 

  34. Kim, S.H., Das, M.P.: Seismic waveguide of Metamaterials. Modern Phys. Lett. B, 26(17), 8 (2012), Art. no. 1250105. https://doi.org/10.1142/s0217984912501059

  35. Brule, S., Javelaud, E.H., Enoch, S., Guenneau, S.: Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112(13), 5 (2014), Art. no. 133901. https://doi.org/10.1103/PhysRevLett.112.133901

  36. Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R.V., Enoch, S., Guenneau, S.: Clamped seismic metamaterials: ultra-low frequency stop bands. New J. Phys. (2017). https://doi.org/10.1088/1367-2630/aa6e21

    Article  Google Scholar 

  37. Achaoui, Y., Ungureanu, B., Enoch, S., Brule, S., Guenneau, S.: Seismic waves damping with arrays of inertial resonators. Extreme Mech. Lett. 8, 30–37 (2016). https://doi.org/10.1016/j.eml.2016.02.004

    Article  Google Scholar 

  38. Krödel, S., Thomé, N., Daraio, C.: Wide band-gap seismic metastructures. Extreme Mech. Lett. 4, 111–117 (2015). https://doi.org/10.1016/j.eml.2015.05.004

    Article  Google Scholar 

  39. Berraquero, C.P., Maurel, A., Petitjeans, P., Pagneux, V.: Experimental realization of a water-wave metamaterial shifter. Phys. Rev. E, 88(5), 5 (2013), Art. no. 051002. https://doi.org/10.1103/PhysRevE.88.051002

  40. Han, T.C., Yuan, T., Li, B.W., Qiu, C.W.: Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization. Sci. Rep. 3, 5 (2013), Art. no. 1593. https://doi.org/10.1038/srep01593

  41. Brillouin, L.: Wave Propagation in Periodic Structures, 2nd edn. Dover Publications Inc, New York (1953)

    MATH  Google Scholar 

  42. Liu, Z.Y., et al.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  43. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  44. Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M.: Large scale mechanical metamaterials as seismic shields. New J. Phys., 18(14) (2016), Art. no. 083041. https://doi.org/10.1088/1367-2630/18/8/083041

  45. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(4), 610–617 (2009). https://doi.org/10.1016/j.ijengsci.2008.12.007

    Article  Google Scholar 

  46. Huang, H.H., Sun, C.T.: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J. Phys. 11(15) (2009), Art. no. 013003. https://doi.org/10.1088/1367-2630/11/1/013003

  47. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. Trans. Asme, 132(3) 6 (2010), Art. no. 031003. https://doi.org/10.1115/1.4000784

  48. Tan, K.T., Huang, H.H., Sun, C.T.: Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett., 101(24), 4 (2012) Art. no. 241902. https://doi.org/10.1063/1.4770370

  49. Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014). https://doi.org/10.1016/j.ijimpeng.2013.09.003

    Article  Google Scholar 

  50. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. a-Math. Phys. Eng. Sci. 463(2079), 855–880 (2007). https://doi.org/10.1098/rspa.2006.1795

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int J Eng Sci 49(12), 1477–1485 (2011). https://doi.org/10.1016/j.ijengsci.2011.04.005

    Article  Google Scholar 

  52. Xu, X.C., Barnhart, M.V., Li, X.P., Chen, Y.Y., Huang, G.L.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019). https://doi.org/10.1016/j.jsv.2018.10.065

    Article  Google Scholar 

  53. Li, Q.Q., He, Z.C., Li, E., Cheng, A.G: Design of a multi-resonator metamaterial for mitigating impact force. J. Appl. Phys. 125(3), 14 (2019), Art. no. 035104. https://doi.org/10.1063/1.5029946

  54. Jaberzadeh, M., Li, B., Tan, K.T.: Wave propagation in an elastic metamaterial with anisotropic effective mass. Wave Motion 89, 131–141 (2019). https://doi.org/10.1016/j.wavemoti.2019.03.009

    Article  MathSciNet  MATH  Google Scholar 

  55. Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018). https://doi.org/10.1016/j.jsv.2018.06.066

    Article  MATH  Google Scholar 

  56. Sun, F.F., Xiao, L.: Bandgap Characteristics and Seismic Applications of Inerter-in-Lattice Metamaterials. J. Eng. Mech. 145(9), 13 (2019), Art. no. 04019067. https://doi.org/10.1061/(asce)em.1943-7889.0001642]

  57. Jiang, G.C.T., Aschner, M.: Chapter 33 - Depleted Uranium. In: Gupta, R.C. (ed.) Handbook of Toxicology of Chemical Warfare Agents (Second Edition), pp. 447–460. Academic Press, Boston (2015)

    Chapter  Google Scholar 

  58. Yue, Y.C., Li, M.H., Wang, H.B., Zhang, B.L., He, W.: The toxicological mechanisms and detoxification of depleted uranium exposure. Environ. Health Prev. Med., Review 23(1), 9 (2018), Art. no. 18. https://doi.org/10.1186/s12199-018-0706-3

  59. Burkart, W., Danesi, P.R., Hendry, J.H.: Properties, use and health effects of depleted uranium. In: Sugahara, T., Morishima, H., Sohrabi, M., Sasaki, Y., Hayata, I., Akiba, S. (eds.) High Levels of Natural Radiation and Radon Areas: Radiation Dose and Health Effects. International Congress Series. vol. 1276, pp. 133-136. Elsevier ScienceBv, Amsterdam (2005)

    Google Scholar 

  60. Du, Q.J., Zeng, Y., Xu, Y., Yang, H.W., Zeng, Z.X.: H-fractal seismic metamaterial with broadband low-frequency bandgaps. J. Phys. D-Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaaac0

    Article  Google Scholar 

  61. Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M.: Large scale mechanical metamaterials as seismic shields. New J. Phys. (2016). https://doi.org/10.1088/1367-2630/18/8/083041

    Article  Google Scholar 

  62. Muhammad and Lim, C.W.: Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps. Phys. Lett. A, 383(23), 2789–2796 (2019). https://doi.org/10.1016/j.physleta.2019.05.039

  63. Muhammad, Lim, C.W., Reddy, J.N.: Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium. Eng. Struct. 188, 440–451 (2019). https://doi.org/10.1016/j.engstruct.2019.03.046

  64. Xu, Y., Xu, R., Peng, P., Yang, H., Zeng, Y., Du, Q.: Broadband H-shaped seismic metamaterial with a rubber coating. EPL (Europhysics Letters) (2019). https://doi.org/10.1209/0295-5075/127/17002

    Article  Google Scholar 

  65. Zeng, Y., et al.: A Matryoshka-like seismic metamaterial with wide band-gap characteristics. Int. J. Solids Struct. (2019). https://doi.org/10.1016/j.ijsolstr.2019.08.032

    Article  Google Scholar 

  66. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994). https://doi.org/10.1006/jcph.1994.1159

    Article  MathSciNet  MATH  Google Scholar 

  67. Duhring, M.B. Laude, V., and Khelif, A.: Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators. J. Appl. Phys. 105(9), 6 (2009), Art. no. 093504. https://doi.org/10.1063/1.3114543

  68. La Salandra, V., Wenzel, M., Bursi, O.S., Carta, G., Movchan, A.B.: Conception of a 3D metamaterial-based foundation for static and seismic protection of fuel storage tanks. Orig. Res. (2017). https://doi.org/10.3389/fmats.2017.00030

    Article  Google Scholar 

  69. Bridgestone. (2017). Seismic Isolator for Buildings. Available: https://www.bridgestone.com/products/diversified/antiseismic_rubber/

  70. Hofmann, P.: Solid State Physics: An Introduction, 2nd edn. Wiley-VCH, Weinheim (2015)

    MATH  Google Scholar 

  71. Achaoui, Y., Khelif, A., Benchabane, S., Robert, L., Laude, V.: Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 83(10), 5 (2011), Art. no. 104201. https://doi.org/10.1103/PhysRevB.83.104201

  72. Huang, J., Liu, Y., Li, Y.: Trees as large-scale natural phononic crystals: Simulation and experimental verification. Int Soil Water Conserv Res 7(2), 196–202 (2019). https://doi.org/10.1016/j.iswcr.2019.03.004

    Article  Google Scholar 

  73. Appelö, D., Petersson, N.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5, 84–107 (2009)

    MathSciNet  MATH  Google Scholar 

  74. Li, T., Su, Q., Kaewunruen, S.: Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions. Constr. Buil. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.119936

    Article  Google Scholar 

  75. Zeng, Y., et al.: A broadband seismic metamaterial plate with simple structure and easy realization. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5080693

    Article  Google Scholar 

  76. Zeng, Y., et al.: Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space. J. Appl. Phys. 123(21), 214901 (2018). https://doi.org/10.1063/1.5021299

    Article  Google Scholar 

  77. Achaoui, Y., Antonakakis, T., Brule, S., Craster, R.V., Enoch, S., Guenneau, S.: Clamped seismic metamaterials: ultra-low frequency stop bands. New J. Phys. 19, 13 (2017), Art. no. 063022. https://doi.org/10.1088/1367-2630/aa6e21]

  78. Chen, Y.Y., Qian, F., Scarpa, F., Zuo, L., Zhuang, X.Y.: Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps. Mater. Design (2019). https://doi.org/10.1016/j.matdes.2019.107813]

  79. Du, Q.J., Zeng, Y., Huang, G.L., Yang, H.W.: Elastic metamaterial-based seismic shield for both Lamb and surface waves. Aip Adv., 7(7), 13 (2017), Art. no. 075015. https://doi.org/10.1063/1.4996716

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 51978550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Masaud Hajjaj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3.

Table 3 Geometric and band gap data from previous research for comparison with this research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjaj, M.M., Tu, J. A seismic metamaterial concept with very short resonators using depleted uranium. Arch Appl Mech 91, 2279–2300 (2021). https://doi.org/10.1007/s00419-021-01883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01883-8

Keywords

Navigation