Skip to main content
Log in

Plane constrained shear of single crystals

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper studies the plane constrained shear problem for single crystals having one active slip system and subjected to loading in both directions within the small strain thermodynamic dislocation theory proposed by Le (J Mech Phys Solids 111:157–169, 2018). The numerical solution of the boundary value problem shows the combined isotropic and kinematic work hardening, the sensitivity of the stress–strain curves to temperature and strain rate, the Bauschinger effect, and the size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\beta \) :

Plastic slip

\(\varvec{\sigma }\) :

Stress tensor

\(\varvec{\varepsilon }\) :

Total strain tensor

\(\varvec{\varepsilon }^\text {e}\) :

Elastic strain tensor

\(\varvec{\varepsilon }^\text {p}\) :

Plastic strain tensor

\(\chi \) :

Configurational temperature

\(\chi _0\) :

Steady-state configurational temperature

\(\gamma (t)\) :

Shear amount (as control parameter)

\(\gamma _D\) :

Energy of one dislocation per unit length

\(\mu \) :

Shear modulus

\(\nu \) :

Poisson’s ratio

\(\rho \) :

Total density of dislocations

\(\rho ^\text {g}\) :

Density of non-redundant dislocations

\(\rho ^\text {r}\) :

Density of redundant dislocations

\(\tau \) :

Resolved shear stress (Schmid stress)

\(\tau _\text {B}\) :

Back stress

\(\tau _\text {T}\) :

Taylor stress

\(\tau _\text {Y}\) :

Flow stress

\(\varphi \) :

Angle between slip direction and \(x_1\)-axis

\(\mathbf {m}\) :

Unit vector normal to the slip plane

\(\mathbf {s}\) :

Unit vector showing the slip direction

\(\mathbf {u}\) :

Displacement vector

\(a^2\) :

The minimally possible area occupied by one dislocation

b :

Magnitude of Burgers’ vector

hwL :

Height, width, and depth of the slab

q :

Dimensionless plastic strain rate

\(q_0\) :

Dimensionless total strain rate

T :

Kinetic-vibrational temperature

\(t_0\) :

Time characterizing the depinning rate

\(T_P\) :

Energy barrier expressed in the temperature unit

Dot over quantities:

Time rates

Bar over quantities:

Quantities averaged over the thickness

Tilde over quantities:

Rescaled (dimensionless) quantities

References

  1. Abbod, M.F., Sellars, C.M., Cizek, P., Linkens, D.A., Mahfouf, M.: Modeling the flow behavior, recrystallization, and crystallographic texture in hot-deformed Fe-30 Wt Pct Ni Austenite. Metall. Mater. Trans. A 38(10), 2400–2409 (2007)

    Article  Google Scholar 

  2. Acharya, A.: New inroads in an old subject: plasticity, from around the atomic to the macroscopic scale. J. Mech. Phys. Solids 58(5), 766–778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anand, L., Gurtin, M.E., Reddy, B.D.: The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int. J. Plast. 64, 1–25 (2015)

    Article  Google Scholar 

  4. Ayers, J.E.: The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst. Growth 135(1–2), 71–77 (1994)

    Article  Google Scholar 

  5. Berdichevsky, V.L.: Homogenization in micro-plasticity. J. Mech. Phys. Solids 53(11), 2457–2469 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berdichevsky, V.L.: Continuum theory of dislocations revisited. Contin. Mech. Thermodyn. 18(3–4), 195–222 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berdichevsky, V.L.: On thermodynamics of crystal plasticity. Scripta Mater. 54(5), 711–716 (2006b)

    Article  Google Scholar 

  8. Berdichevsky, V.L.: Entropy of microstructure. J. Mech. Phys. Solids 56(3), 742–771 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berdichevsky, V.L.: Beyond classical thermodynamics: dislocation-mediated plasticity. J. Mech. Phys. Solids 129, 83–118 (2019)

    Article  MathSciNet  Google Scholar 

  10. Berdichevsky, V.L., Le, K.C.: Dislocation nucleation and work hardening in anti-plane constrained shear. Contin. Mech. Thermodyn. 18(7–8), 455–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. J. Appl. Math. Mech. 31(6), 989–1006 (1967)

    Article  Google Scholar 

  12. Bilby B (1955) Types of dislocation source. In: Report of Bristol Conference on Defects in Crystalline Solids (Bristol 1954, London: The Physical Soc.), pp. 124–133

  13. Calcagnotto, M., Ponge, D., Demir, E., Raabe, D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2d and 3d ebsd. Mater. Sci. Eng. A 527(10–11), 2738–2746 (2010)

    Article  Google Scholar 

  14. Follansbee, P.S., Kocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36(1), 81–93 (1988)

    Article  Google Scholar 

  15. Groma, I., Csikor, F., Zaiser, M.: Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51(5), 1271–1281 (2003)

    Article  Google Scholar 

  16. Hochrainer, T.: Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 88, 12–22 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kröner, E.: Der fundamentale zusammenhang zwischen versetzungsdichte und spannungsfunktionen. Z. Phys. 142(4), 463–475 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen, vol. 5. Springer, New York (1958)

    Book  MATH  Google Scholar 

  19. Langer, J.S.: Statistical thermodynamics of strain hardening in polycrystalline solids. Phys. Rev. E 92(3), 032125 (2016)

    Article  Google Scholar 

  20. Langer, J.S., Le, K.C.: Scaling confirmation of the thermodynamic dislocation theory. Proc. Natl. Acad. Sci. USA 117(47), 29431–29434 (2020)

    Article  Google Scholar 

  21. Langer, J.S., Bouchbinder, E., Lookman, T.: Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58(10), 3718–3732 (2010)

    Article  Google Scholar 

  22. Le, K.C.: Thermodynamic dislocation theory for non-uniform plastic deformations. J. Mech. Phys. Solids 111, 157–169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le, K.C.: Two universal laws for plastic flows and the consistent thermodynamic dislocation theory. Mech. Res. Commun. 109, 103597 (2020a)

    Article  Google Scholar 

  24. Le, K.C.: Introduction to Micromechanics. Nova Science, New York (2020b)

    Google Scholar 

  25. Le, K.C., Piao, Y.: Thermodynamic dislocation theory: size effect in torsion. Int. J. Plast. 115, 56–70 (2019)

    Article  Google Scholar 

  26. Le, K.C., Sembiring, P.: Analytical solution of plane constrained shear problem for single crystals within continuum dislocation theory. Arch. Appl. Mech. 78(8), 587–597 (2008)

    Article  MATH  Google Scholar 

  27. Le, K.C., Stumpf, H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 12(5), 611–627 (1996)

    Article  MATH  Google Scholar 

  28. Le, K.C., Tran, T.M.: Thermodynamic dislocation theory: bauschinger effect. Phys. Rev. E 97(4), 043002 (2018)

    Article  Google Scholar 

  29. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel. Phys. Rev. E 96, 013004 (2017)

    Article  Google Scholar 

  30. Le, K.C., Tran, T.M., Langer, J.S.: Thermodynamic dislocation theory of adiabatic shear banding in steel. Scripta Mater. 149, 62–65 (2018)

    Article  Google Scholar 

  31. Levitas, V.I., Javanbakht, M.: Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J. Mech. Phys. Solids 82, 345–366 (2015)

    Article  MathSciNet  Google Scholar 

  32. Lieou CK, Bronkhorst CA (2020) Thermodynamic theory of crystal plasticity: formulation and application to polycrystal FCC copper. J. Mech. Phys. Solids 103905

  33. Marchand, A., Duffy, J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids 36(3), 251–283 (1988)

    Article  Google Scholar 

  34. Morito, S., Nishikawa, J., Maki, T.: Dislocation density within lath martensite in Fe–C and Fe–Ni alloys. ISIJ Int. 43(9), 1475–1477 (2003)

    Article  Google Scholar 

  35. Mura, T.: Continuous distribution of dislocations and the mathematical theory of plasticity. Phys. Status Solidi B 10(2), 447–453 (1965)

    Article  Google Scholar 

  36. Nye, J.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Article  Google Scholar 

  37. Ortiz, M., Repetto, E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Po, G., Huang, Y., Ghoniem, N.: A continuum dislocation-based model of wedge microindentation of single crystals. Int. J. Plast. 114, 72–86 (2019)

    Article  Google Scholar 

  39. Samanta, S.K.: Dynamic deformation of aluminium and copper at elevated temperatures. J. Mech. Phys. Solids 19(3), 117–135 (1971)

    Article  Google Scholar 

  40. Shi, H., McLaren, A.J., Sellars, C.M., Shahani, R., Bolingbroke, R.: Constitutive equations for high temperature flow stress of aluminium alloys. Mater. Sci. Technol. 13(3), 210–216 (1997)

    Article  Google Scholar 

  41. Weertman, J.H.: Dislocation Based Fracture Mechanics. World Scientific Publishing Company, Singapore (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Le.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günther, F., Le, K.C. Plane constrained shear of single crystals. Arch Appl Mech 91, 2109–2126 (2021). https://doi.org/10.1007/s00419-020-01872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01872-3

Keywords

Navigation