Skip to main content
Log in

Effect of Crystal Orientation and Crystallographic Anisotropy on Shear Band Formation During Ductile Fracture in Fe Single Crystals

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shear bands are very common microstructural features in metals undergoing high plastic deformation. In processes like cold rolling, shear banding plays an essential role in obtaining the desired crystallographic texture. However, the exact deformation mechanism of shear bands is yet to be fully understood. This work explores the modeling of shear band formation and the effect of orientation of the crystal, prior to the deformation, through single crystal simulations. The effect of crystal orientation and crystallographic anisotropy on shear band formation is studied using a gradient damage model coupled with plasticity and crystallographic information. It is observed that the orientation affects shear band thickness and the strain at which shear bands are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Hines, K.S. Vecchio, and S. Ahzi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 191–203.

    Article  CAS  Google Scholar 

  2. Q. Xue and G.T. Gray: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2435–46.

    Article  CAS  Google Scholar 

  3. Q. Xue and G. Gray: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2447–58.

    Article  CAS  Google Scholar 

  4. J. Cheng and S. Ghosh: Comput. Mater. Sci., 2013, vol. 69, pp. 494–504.

    Article  CAS  Google Scholar 

  5. Y. Long, L. Peng, W. Zhang, H. Peng, J. Zhang, and X. Huang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2064–71.

    Article  Google Scholar 

  6. M.C. Jo, S. Kim, H.K. Park, S.S. Hong, H.K. Kim, H.S. Kim, and S. Lee: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3384–91.

    Article  Google Scholar 

  7. D. Dorner, Y. Adachi, and K. Tsuzaki: Scripta Mater., 2007, vol. 57(8), pp. 775–78.

    Article  CAS  Google Scholar 

  8. N. Jia, D. Raabe, and X. Zhao: Acta Mater., 2014, vol. 76, pp. 238–51.

    Article  CAS  Google Scholar 

  9. N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao: Acta Mater., 2012, vol. 60(8), pp. 3415–34.

    Article  CAS  Google Scholar 

  10. H. Zbib and E. Aifantis: Acta Mech., 1992, vol. 92(1), pp. 209–25.

    Article  Google Scholar 

  11. J. Pamin: Comput. Mater. Sci., 2005, vol. 32(3), pp. 472–79.

    Article  Google Scholar 

  12. L.Z. Mansouri, H. Chalal, and F. Abed-Meraim: Mech. Mater., 2014, vol. 76, pp. 64–92.

    Article  Google Scholar 

  13. H.-B. Mühlhaus and E. Alfantis: Int. J. Solids Struct., 1991, vol. 28(7), pp. 845–57.

    Article  Google Scholar 

  14. A. Menzel and P. Steinmann: J. Mech. Phys. Solids, 2000, vol. 48(8), pp. 1777–96.

    Article  Google Scholar 

  15. E. Kuhl and E. Ramm: Comput. Mater. Sci., 1999, vol. 16(1), pp. 176–85.

    Article  Google Scholar 

  16. A. Emdadi and M. Asle Zaeem: Comput. Mater. Sci., 2021, vol. 186, p. 110057.

    Article  CAS  Google Scholar 

  17. N. Zhao, A. Roy, W. Wang, L. Zhao, and V.V. Silberschmidt: Mech. Mater., 2019, vol. 130, pp. 29–38.

    Article  Google Scholar 

  18. E. Tanné, T. Li, B. Bourdin, J.-J. Marigo, and C. Maurini: J. Mech. Phys. Solids, 2018, vol. 110, pp. 80–99.

    Article  Google Scholar 

  19. K. Pham, H. Amor, J.-J. Marigo, and C. Maurini: Int. J. Damage Mech, 2011, vol. 20(4), pp. 618–52.

    Article  Google Scholar 

  20. S. Karthik, A. Rajagopal, and J. Reddy: Mech. Mater., 2021, vol. 157, p. 103797.

    Article  Google Scholar 

  21. T.K. Mandal, V.P. Nguyen, and J.-Y. Wu: Eng. Fract. Mech., 2020, vol. 235, p. 107169.

    Article  Google Scholar 

  22. R. Alessi: (Ph.D. thesis), Ecole Polytechnique X, 2013, https://pastel.archives-ouvertes.fr/pastel-00847970.

  23. R. Alessi, J.-J. Marigo, and S. Vidoli: Mech. Mater., 2015, vol. 80, pp. 351–67.

    Article  Google Scholar 

  24. S. Brach, E. Tanné, B. Bourdin, and K. Bhattacharya: Comput. Methods Appl. Mech. Eng., 2019, vol. 353, pp. 44–65.

    Article  Google Scholar 

  25. E. Tanné: (Ph.D. thesis), Universite Paris-Saclay, 2017, https://pastel.archives-ouvertes.fr/tel-01758354.

  26. R. Alessi, J.-J. Marigo, C. Maurini, and S. Vidoli: Int. J. Mech. Sci., 2018, vol. 149, pp. 559–76.

    Article  Google Scholar 

  27. T.C.T. Ting: Anisotropic Elasticity: Theory and Applications, Oxford University Press, Oxford, 1996, pp. 32–64.

    Book  Google Scholar 

  28. S.S. Rao: Engineering Optimization Theory and Practice, Wiley, Hoboken, 2019, pp. 347–448.

    Book  Google Scholar 

  29. M.A. Msekh, J.M. Sargado, M. Jamshidian, P.M. Areias, and T. Rabczuk: Comput. Mater. Sci., 2015, vol. 96, pp. 472–84.

    Article  Google Scholar 

  30. C. Geuzaine and J.-F. Remacle: Int. J. Numer. Methods Eng., 2009, vol. 79(11), pp. 1309–31.

    Article  Google Scholar 

  31. K. Spencer, S. Corbin, and D. Lloyd: Mater. Sci. Eng. A, 2002, vol. 325(1), pp. 394–404.

    Article  Google Scholar 

  32. G.E. Dieter and D. Bacon: Mechanical Metallurgy, McGraw-hill, New York, 1986, pp. 103–44.

    Google Scholar 

  33. W.F. Hosford: The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, Oxford, 1994, pp. 532–32.

    Google Scholar 

Download references

Competing interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G.S., Varma, T.V., Ghosh, A. et al. Effect of Crystal Orientation and Crystallographic Anisotropy on Shear Band Formation During Ductile Fracture in Fe Single Crystals. Metall Mater Trans A 55, 598–606 (2024). https://doi.org/10.1007/s11661-023-07271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07271-x

Navigation