Skip to main content
Log in

Simulation of martensitic microstructures in a low-alloy steel

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The martensite structure of steel is of great importance in mechanical engineering and is usually adjusted by heat treatment. Of particular interest is the morphology of martensite, as it has a significant influence on mechanical properties. In this work, a phase field model is presented, where the order parameter is used to describe the evolution of martensite in order to predict the resulting morphology. In a first step, simulations with two martensite variants with different transformation strains by means of the finite element method in the small strain context show the basic applicability of the model in a two-dimensional environment. With a concept based on the phenomenological theory of martensite crystallography, good agreement with the transformation mechanics of the experiment is achieved. Furthermore, an illustrative three-dimensional simulation takes the crystallographic variants of the Nishiyama–Wasserman orientation relationship into account. The size of the simulation domain corresponds to the size of a prior austenite grain. The calculated block sizes agree with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abeyaratne, R., Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38(3), 345–360 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Ahluwalia, R., Lookman, T., Saxena, A., Albers, R.C.: Landau theory for shape memory polycrystals. Acta Mater. 52(1), 209–218 (2004)

    Article  Google Scholar 

  4. Ahluwalia, R., Quek, S.S., Wu, D.T.: Simulation of grain size effects in nanocrystalline shape memory alloys. J. Appl. Phys. 117(24), 244305 (2015)

    Article  Google Scholar 

  5. Alber, H.D., Zhu, P.: Solutions to a model for interface motion by interface diffusion. Proc. R. Soc. Edinb. Sect. A Math. 138(5), 923–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amos, P.G.K., Schoof, E., Streichan, N., Schneider, D., Nestler, B.: Phase-field analysis of quenching and partitioning in a polycrystalline Fe-C system under constrained-carbon equilibrium condition. Comput. Mater. Sci. 159, 281–296 (2019)

    Article  Google Scholar 

  7. Andersson, J.O., Helander, T., Höglund, L., Shi, P., Sundman, B.: Thermo-calc & dictra, computational tools for materials science. Calphad 26(2), 273–312 (2002)

    Article  Google Scholar 

  8. Artemev, A., Jin, Y.M., Khachaturyan, A.G.K.: Three-dimensional phase field model of proper martensitic transformation. Acta Mater. 49(7), 1165–1177 (2001)

    Article  Google Scholar 

  9. Artemev, A., Wang, Y., Khachaturyan, A.G.: Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta Mater. 48(10), 2503–2518 (2000)

    Article  Google Scholar 

  10. Aubry, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput. Methods Appl. Mech. Eng. 192(26–27), 2823–2843 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bachmann, F., Hielscher, R., Schaeben, H.: Texture analysis with MTEX – free and open source software toolbox. In: Klein, H., Schwarzer, R.A. (eds.) Solid State Phenomena, vol. 160, pp. 63–68. Trans Tech Publ (2010)

  12. Bain, E.C., Dunkirk, N.Y.: The nature of martensite. Trans. AIME 70(1), 25–47 (1924)

    Google Scholar 

  13. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page (2019). https://www.mcs.anl.gov/petsc

  14. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.12, Argonne National Laboratory (2019)

  15. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object-oriented numerical software libraries. In:Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, pp. 163–202. Springer (1997)

  16. Barsch, G.R., Krumhansl, J.A.: Twin boundaries in ferroelastic media without interface dislocations. Phys. Rev. Lett. 53(11), 1069 (1984)

    Article  Google Scholar 

  17. Barsch, G.R., Krumhansl, J.A.: Nonlinear and nonlocal continuum model of transformation precursors in martensites. Metall. Trans. A 19(4), 761–775 (1988)

    Article  Google Scholar 

  18. Bartel, T.: Multiskalenmodellierung martensitischer Phasentransformationen in Formgedächtnislegierungen unter Verwendung relaxierter Energiepotenziale. Ph.D. thesis, Ruhr University Bochum (2009)

  19. Bartel, T., Hackl, K.: A novel approach to the modelling of single-crystalline materials undergoing martensitic phase-transformations. Mater. Sci. Eng. A 481, 371–375 (2008)

    Article  Google Scholar 

  20. Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. ZAMM-J. Appl. Math Mech./Z. Angew. Math. Mech. Appl. Math. Mech. 89(10), 792–809 (2009)

    MATH  Google Scholar 

  21. Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhadeshia, H.K.D.H.: Martensite transformation. In: Encyclopedia of Materials: Science and Technology, pp. 5203–5206. Elsevier (2001)

  23. Bowles, J.S., Mackenzie, J.K.: The crystallography of martensite transformations I. Acta Metall. 2(1), 129–137 (1954)

    Article  Google Scholar 

  24. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  25. Callister, W.D., Rethwisch, D.G.: Materials science and engineering, vol. 5. wiley, New York (2011)

    Google Scholar 

  26. Cayron, C.: ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data. J. Appl. Crystallogr. 40(6), 1183–1188 (2007)

    Article  Google Scholar 

  27. Chen, L.Q., Wang, Y., Khachaturyan, A.G.: Kinetics of tweed and twin formation during an ordering transition in a substitutional solid solution. Philos. Mag. Lett. 65(1), 15–23 (1992)

    Article  Google Scholar 

  28. Conti, S., Fonseca, I., Leoni, G.: A \(\Gamma \)-convergence result for the two-gradient theory of phase transitions. Commun. Pure Appl. Math. 55(7), 857–936 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cui, S., Cui, Y., Wan, J., Rong, Y., Zhang, J.: Grain size dependence of the martensite morphology-a phase-field study. Comput. Mater. Sci. 121, 131–142 (2016)

    Article  Google Scholar 

  30. Cui, S., Wan, J., Rong, Y., Zhang, J.: Phase-field simulations of thermomechanical behavior of MnNi shape memory alloys using finite element method. Comput. Mater. Sci. 139, 285–294 (2017)

    Article  Google Scholar 

  31. Cui, S., Wan, J., Zhang, J., Chen, N., Rong, Y.: Phase-field study of microstructure and plasticity in polycrystalline MnNi shape memory alloys. Metall. Mater. Trans. A 49(12), 5936–5941 (2018)

    Article  Google Scholar 

  32. Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Springer, Berlin (2007)

    MATH  Google Scholar 

  33. Diewald, F., Kuhn, C., Heier, M., Langenbach, K., Horsch, M., Hasse, H., Müller, R.: Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors. Comput. Mater. Sci. 141, 185–192 (2018)

    Article  Google Scholar 

  34. Du, G.: Phase-field simulation of lath martensite in low-carbon steel. Ph.D. thesis, Ruhr University Bochum (2017)

  35. Eggbauer, A., Ressel, G., Gruber, M., Prevedel, P., Marsoner, S., Stark, A., Ebner, R.: Different Cooling Rates and Their Effect on Morphology and Transformation Kinetics of Martensite. In: Proceedings of the International Conference on Martensitic Transformations: Chicago, pp. 35–40. Springer (2018)

  36. Engin, C., Urbassek, H.M.: Molecular-dynamics investigation of the fcc \(\rightarrow \) bcc phase transformation in Fe. Comput. Mater. Sci. 41(3), 297–304 (2008)

    Article  Google Scholar 

  37. Entel, P., Meyer, R., Kadau, K.: Molecular dynamics simulations of martensitic transitions. Philos. Mag. B 80(2), 183–194 (2000)

    Article  Google Scholar 

  38. Finel, A., Le Bouar, Y., Gaubert, A., Salman, U.: Phase field methods: microstructures, mechanical properties and complexity. C.R. Phys. 11(3–4), 245–256 (2010)

    Article  Google Scholar 

  39. Fried, E., Grach, G.: An order-parameter-based theory as a regularization of a sharp-interface theory for solid-solid phase transitions. Arch. Ration. Mech. Anal. 138(4), 355–404 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68(3–4), 326–343 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fried, E., Gurtin, M.E.: Dynamic solid-solid transitions with phase characterized by an order parameter. Physica D 72(4), 287–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Garcke, H.: On mathematical models for phase separation in elastically stressed solids (2000). Habilitation thesis

  43. Graf, M., Kuntz, M., Autenrieth, H., Müller, R.: Investigation of size effects due to different cooling rates of as-quenched martensite microstructures in a Low-Alloy Steel. Appl. Sci. 10(15), 5395 (2020)

    Article  Google Scholar 

  44. Greninger, A.B., Troiano, A.R.: The mechanism of martensite formation. Trans AIME 1(9), 590–598 (1949)

    Google Scholar 

  45. Hestenes, M.R., Stiefel, E., et al.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bureau Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hildebrand, F., Miehe, C.: A regularized sharp interface model for phase transformation accounting for prescribed sharp interface kinetics. PAMM 10(1), 673–676 (2010)

    Article  Google Scholar 

  47. Hildebrand, F., Miehe, C.: Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. PAMM 12(1), 37–40 (2012)

    Article  Google Scholar 

  48. Hildebrand, F.E.: Variational multifield modeling of the formation and evolution of laminate microstructure. Ph.D. thesis, University of Stuttgart (2013)

  49. Hildebrand, F.E., Miehe, C.: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Phil. Mag. 92(34), 4250–4290 (2012)

    Article  Google Scholar 

  50. Honda, K., Nishiyama, Z.: On the nature of the tetragonal and cubic martensites. Sci. Rep. Tohoku Imp. Univ. 21, 299–331 (1932)

    Google Scholar 

  51. Huiping, L., Guoqun, Z., Shanting, N., Chuanzhen, H.: FEM simulation of quenching process and experimental verification of simulation results. Mater. Sci. Eng. A 452, 705–714 (2007)

    Article  Google Scholar 

  52. Jacobs, A.E.: Landau theory of structures in tetragonal-orthorhombic ferroelastics. Phys. Rev. B 61(10), 6587 (2000)

    Article  Google Scholar 

  53. Jacobs, A.E., Curnoe, S.H., Desai, R.C.: Simulations of cubic-tetragonal ferroelastics. Phys. Rev. B 68(22), 224104 (2003)

    Article  Google Scholar 

  54. Javanbakht, M., Levitas, V.I.: Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J. Mech. Phys. Solids 82, 164–185 (2015)

    Article  MathSciNet  Google Scholar 

  55. Ji, H., Chopp, D., Dolbow, J.E.: A hybrid extended finite element/level set method for modeling phase transformations. Int. J. Numer. Meth. Eng. 54(8), 1209–1233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Jin, Y.M., Artemev, A., Khachaturyan, A.G.: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta \)’2 martensite in AuCd alloys. Acta Mater. 49(12), 2309–2320 (2001)

    Article  Google Scholar 

  57. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kitahara, H., Ueji, R., Ueda, M., Tsuji, N., Minamino, Y.: Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD. Mater. Charact. 54(4–5), 378–386 (2005)

    Article  Google Scholar 

  59. Kochmann, J., Wulfinghoff, S., Reese, S., Mianroodi, J.R., Svendsen, B.: Two-scale FE-FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Comput. Methods Appl. Mech. Eng. 305, 89–110 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems, I. Commun. Pure Appl. Math. 39(1), 113–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  61. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems, II. Commun. Pure Appl. Math. 39(2), 139–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems, III. Commun. Pure Appl. Math. 39(3), 353–377 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  63. Koistinen, D.P., Marburger, R.E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7(1), 59–60 (1959)

    Article  Google Scholar 

  64. Kružík, M., Mielke, A., Roubíček, T.: Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40(4–6), 389–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kuhn, C.: Numerical and Analytical Investigation of a Phase Field Model for Fracture. doctoralthesis, Technische Universität Kaiserslautern (2013)

  66. Kurdjumov, G., Sachs, G.: Over the mechanisms of steel hardening. Z. Phys. 64, 325–343 (1930)

    Google Scholar 

  67. Levitas, V.I., Javanbakht, M.: Interaction between phase transformations and dislocations at the nanoscale. Part 1. General phase field approach. J. Mech. Phys. Solids 82, 287–319 (2015)

    Article  MathSciNet  Google Scholar 

  68. Levitas, V.I., Lee, D.W., Preston, D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast 26(3), 395–422 (2010)

    Article  MATH  Google Scholar 

  69. Levitas, V.I., Roy, A.M., Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88(5), 054113 (2013)

    Article  Google Scholar 

  70. Luskin, M.: On the computation of crystalline microstructure. Acta Numer. 5, 191–257 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  71. Málek, J., Strakos, Z.: Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs, vol. 1. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  72. Malik, A., Amberg, G., Borgenstam, A., Ågren, J.: Phase-field modelling of martensitic transformation: the effects of grain and twin boundaries. Modell. Simul. Mater. Sci. Eng. 21(8), 085003 (2013)

    Article  Google Scholar 

  73. Malik, A., Yeddu, H.K., Amberg, G., Borgenstam, A., Ågren, J.: Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal. Mater. Sci. Eng., A 556, 221–232 (2012)

    Article  Google Scholar 

  74. Mamivand, M., Zaeem, M.A., El Kadiri, H.: A review on phase field modeling of martensitic phase transformation. Comput. Mater. Sci. 77, 304–311 (2013)

    Article  Google Scholar 

  75. Marder, A.R., Benscoter, A.O., Krauss, G.: Microcracking sensitivity in Fe-C plate martensite. Metall. Trans. 1(6), 1545–1549 (1970)

    Article  Google Scholar 

  76. Mecozzi, M.G., Eiken, J., Santofimia, M.J., Sietsma, J.: Phase field modelling of microstructural evolution during the quenching and partitioning treatment in low-alloy steels. Comput. Mater. Sci. 112, 245–256 (2016)

    Article  Google Scholar 

  77. Moelans, N.: A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater. 59(3), 1077–1086 (2011)

    Article  Google Scholar 

  78. Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Comput. Coupling Phase Diagr. Thermochem 32(2), 268–294 (2008)

    Article  Google Scholar 

  79. Morito, S., Tanaka, H., Konishi, R., Furuhara, T., Maki, T.: The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51(6), 1789–1799 (2003)

    Article  Google Scholar 

  80. Müller, R.: A phase field model for the evolution of martensite microstructures in metastable austenites. Ph.D. thesis, University of Kaiserslautern (2016)

  81. Nishiyama, Z.: X-ray investigation of the mechanism of the transformation from face centered cubic lattice to body centered cubic. Sci. Rep. Tohoku Univ. 23, 637 (1934)

    Google Scholar 

  82. Nishiyama, Z.: Martensitic Transformation. Elsevier, Amsterdam (2012)

    Google Scholar 

  83. Olson, G., Cohen, M.: A perspective on martensitic nucleation. Annu. Rev. Mater. Sci. 11(1), 1–32 (1981)

    Article  Google Scholar 

  84. Ou, X.: Molecular dynamics simulations of fcc-to-bcc transformation in pure iron: a review. Mater. Sci. Technol. 33(7), 822–835 (2017)

    Article  Google Scholar 

  85. Petryk, H., Stupkiewicz, S.: Interfacial energy and dissipation in martensitic phase transformations. Part I: theory. J. Mech. Phys. Solids 58(3), 390–408 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Petryk, H., Stupkiewicz, S., Maciejewski, G.: Interfacial energy and dissipation in martensitic phase transformations. Part II: size effects in pseudoelasticity. J. Mech. Phys. Solids 58(3), 373–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  87. Rasmussen, K.Ø., Lookman, T., Saxena, A., Bishop, A.R., Albers, R.C., Shenoy, S.R.: Three-dimensional elastic compatibility and varieties of twins in martensites. Phys. Rev. Lett. 87(5), 055704 (2001)

    Article  Google Scholar 

  88. Rezaee-Hajidehi, M., Stupkiewicz, S.: Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation. Mech. Mater. 141, 103267 (2020)

    Article  Google Scholar 

  89. Roumi, F.: Shape changing transformations: interactions with plasticity and electrochemical processes. Ph.D. thesis, California Institute of Technology (2010)

  90. Rubini, S., Ballone, P.: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys. Phys. Rev. B 48(1), 99 (1993)

    Article  Google Scholar 

  91. Rubini, S., Ballone, P.: Erratum: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys. Phys. Rev. B 49(21), 15428 (1994)

    Article  Google Scholar 

  92. Sandoval, L., Urbassek, H.M.: Transformation pathways in the solid-solid phase transitions of iron nanowires. Appl. Phys. Lett. 95(19), 191909 (2009)

    Article  Google Scholar 

  93. Schäfer, B.J., Song, X., Sonnweber-Ribic, P., Hartmaier, A., et al.: Micromechanical modelling of the cyclic deformation behavior of martensitic SAE 4150—a comparison of different kinematic hardening models. Metals 9(3), 368 (2019)

    Article  Google Scholar 

  94. Schänzel, M., Shakirov, D., Ilin, A., Ploshikhin, V.: Coupled thermo-mechanical process simulation method for selective laser melting considering phase transformation steels. Comput. Math. Appl. 78, 2230–2246 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  95. Schmidt, S., Dornisch, W., Müller, R.: A phase field model for martensitic transformation coupled with the heat equation. GAMM-Mitteilungen 40(2), 138–153 (2017)

    Article  MathSciNet  Google Scholar 

  96. Schmidt, S., Müller, R.: Heat conduction in a phase field model for martensitic transformation. PAMM 17(1), 561–562 (2017)

    Article  Google Scholar 

  97. Schmitt, R., Kuhn, C., Müller, R.: On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface. Continuum Mech. Thermodyn. 29(4), 957–968 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  98. Schmitt, R., Kuhn, C., Müller, R., Bhattacharya, K.: Crystal plasticity and martensitic transformations—a phase field approach. Tech. Mech. 34(1), 23–38 (2014)

    Google Scholar 

  99. Schmitt, R., Kuhn, C., Skorupski, R., Smaga, M., Eifler, D., Müller, R.: A combined phase field approach for martensitic transformations and damage. Arch. Appl. Mech. 85(9–10), 1459–1468 (2015)

    Article  MATH  Google Scholar 

  100. Schmitt, R., Müller, R., Kuhn, C.: A phase field model for martensitic transformations. PAMM 12(1), 261–262 (2012)

    Article  Google Scholar 

  101. Schmitt, R., Müller, R., Kuhn, C., Urbassek, H.M.: A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch. Appl. Mech. 83(6), 849–859 (2013)

    Article  MATH  Google Scholar 

  102. Schmitt, R., Müller, R., Skorupski, R., Smaga, M., Eifler, D.: A phase field approach for martensitic transformations in elastoplastic materials. PAMM 13(1), 213–214 (2013)

    Article  Google Scholar 

  103. Schmitt, R., Wang, B., Urbassek, H.M., Müller, R.: Modeling of martensitic transformations in pure iron by a phase field approach using information from atomistic simulation. Tech. Mech. 33, 119–130 (2013)

    Google Scholar 

  104. Schneider, D., Schoof, E., Tschukin, O., Reiter, A., Herrmann, C., Schwab, F., Selzer, M., Nestler, B.: Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput. Mech. 61(3), 277–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  105. Schoof, E., Herrmann, C., Schneider, D., Hötzer, J., Nestler, B.: Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’18, pp. 475–488. Springer (2019)

  106. Schoof, E., Herrmann, C., Streichhan, N., Selzer, M., Schneider, D., Nestler, B.: On the multiphase-field modeling of martensitic phase transformation in dual-phase steel using \(J_2\)-viscoplasticity. Model. Simul. Mater. Sci. Eng. 27(2), 025010 (2018)

  107. Schoof, E., Schneider, D., Streichhan, N., Mittnacht, T., Selzer, M., Nestler, B.: Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure. Int. J. Solids Struct. 134, 181–194 (2018)

    Article  Google Scholar 

  108. Schrade, D., Mueller, R., Xu, B.X., Gross, D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196(41–44), 4365–4374 (2007)

    Article  MATH  Google Scholar 

  109. Schwenk, M.: Numerische Modellierung der Induktiven Ein-und Zweifrequenzrandschichthärtung. KIT Scientific Publishing, Karlsruhe (2014)

    Google Scholar 

  110. Shchyglo, O., Du, G., Engels, J.K., Steinbach, I.: Phase-field simulation of martensite microstructure in low-carbon steel. Acta Mater. 175, 415–425 (2019)

    Article  Google Scholar 

  111. Taylor, R.L.: FEAP - finite element analysis program (2014). http://www.ce.berkeley/feap

  112. Urbassek, H.M., Sandoval, L.: Molecular dynamics modeling of martensitic transformations in steels. In:Pereloma, E., Edmonds, D.V. (eds.) Phase transformations in steels, pp. 433–463. Elsevier (2012)

  113. Wang, B., Sak-Saracino, E., Gunkelmann, N., Urbassek, H.M.: Molecular-dynamics study of the \(\alpha \leftrightarrow \gamma \) phase transition in Fe-C. Comput. Mater. Sci. 82, 399–404 (2014)

    Article  Google Scholar 

  114. Wang, B., Urbassek, H.M.: Phase transitions in an Fe system containing a bcc/fcc phase boundary: an atomistic study. Phys. Rev. B 87(10), 104108 (2013)

    Article  Google Scholar 

  115. Wang, Y., Khachaturyan, A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45(2), 759–773 (1997)

    Article  Google Scholar 

  116. Wang, Y., Khachaturyan, A.G.: Multi-scale phase field approach to martensitic transformations. Mater. Sci. Eng. A 438, 55–63 (2006)

    Article  Google Scholar 

  117. Wassermann, G.: Über den Mechanismus der \(\alpha \)-\(\gamma \)-Umwandlung des Eisens. Verlag Stahleisen, Düsseldorf (1935)

    Google Scholar 

  118. Wechsler, M.S., Lieberman, D.S., Read, T.A.: On the theory of the formation of martensite. Trans. AIME 197, 1503–1515 (1953)

    Google Scholar 

  119. Xie, C.L., Ghosh, S., Groeber, M.: Modeling cyclic deformation of HSLA steels using crystal plasticity. J. Eng. Mater. Technol. 126(4), 339–352 (2004)

    Article  Google Scholar 

  120. Yamanaka, A., Takaki, T., Tomita, Y.: Elastoplastic phase-field simulation of self-and plastic accommodations in cubic tetragonal martensitic transformation. Mater. Sci. Eng. A 491(1–2), 378–384 (2008)

    Article  Google Scholar 

  121. Yamanaka, A., Takaki, T., Tomita, Y., Yoshino, M.: Crystal plasticity phase-field simulation of deformation behavior and microstructure evolution in polycrystalline material. In: Proceedings of X International Conference on Computational Plasticity-COMPLAS X (CD-ROM), vol. 462, pp. 1–4 (2009)

  122. Yeddu, H.K.: Phase-field modeling of austenite grain size effect on martensitic transformation in stainless steels. Comput. Mater. Sci. 154, 75–83 (2018)

    Article  Google Scholar 

  123. Yeddu, H.K., Borgenstam, A., Hedström, P., Ågren, J.: A phase-field study of the physical concepts of martensitic transformations in steels. Mater. Sci. Eng. A 538, 173–181 (2012)

    Article  Google Scholar 

  124. Yeddu, H.K., Malik, A., Ågren, J., Amberg, G., Borgenstam, A.: Three-dimensional phase-field modeling of martensitic microstructure evolution in steels. Acta Mater. 60(4), 1538–1547 (2012)

    Article  Google Scholar 

  125. Zhang, W., Jin, Y.M., Khachaturyan, A.G.: Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta Mater. 55(2), 565–574 (2007)

    Article  Google Scholar 

  126. Zhang, X., Shen, G., Li, C., Gu, J.: Analysis of interface migration and isothermal martensite formation for quenching and partitioning process in a low-carbon steel by phase field modeling. Modell. Simul. Mater. Sci. Eng. 27(7), 075011 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Marius Graf is very grateful to Cyril Cayron for providing the new version of ARPGE. Furthermore, Marius Graf would like to thank Sanjay Govindjee and Robert L. Taylor for their support via the FEAP user forum (http://feap.berkeley.edu/forum/). Felix Diewald and Ralf Müller would like to thank the DFG (Deutsche Forschungsgemeinschaft—German Research Foundation) for financial support—Projektnummer 172116086 - SFB 926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Graf.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendices

Weighting factors of the phase field potential

Consider the standard equilibrium case (\(\varDelta g = 0\)) of an indefinitely extended one-dimensional continuum, which consists of two phases as depicted in Fig. 14. In equilibrium state, the order parameter function

$$\begin{aligned} \varphi = \frac{1}{2} \left[ {{\mathrm {tanh}}}\left( \frac{2 x}{l} \right) + 1 \right] \end{aligned}$$
(42)

solves the Euler–Lagrange equation

$$\begin{aligned} \frac{\partial \psi ^{{{\mathrm {int}}}}}{\partial \varphi } - \frac{d}{d x} \left[ \frac{\partial \psi ^{{{\mathrm {int}}}}}{\varphi ^\prime } \right] = 0 \quad \text {with} \quad \varphi ^\prime = \frac{d \varphi }{d x} \end{aligned}$$
(43)

of the variational problem

$$\begin{aligned} F^{{\mathrm {int}}} = \int _{- \infty }^{\infty } \psi ^{{{\mathrm {int}}}} \, dx. \end{aligned}$$
(44)

Multiplying Eq. (43) with \(\varphi ^\prime \) and utilizing the identity

$$\begin{aligned} \frac{d}{d x} \left[ \frac{\partial \psi ^{{{\mathrm {int}}}}}{\varphi ^\prime } \right] \, \frac{d \varphi }{d x} = \frac{d}{d x} \left[ \frac{\partial \psi ^{{{\mathrm {int}}}}}{\varphi ^\prime } \, \frac{d \varphi }{d x} \right] - \frac{\partial \psi ^{{{\mathrm {int}}}}}{\varphi ^\prime } \, \frac{d^2 \varphi }{d x^2} \end{aligned}$$
(45)

lead to

$$\begin{aligned} \frac{d}{dx} \left[ \psi ^{{{\mathrm {int}}}} - \frac{\partial \psi ^{{{\mathrm {int}}}}}{\partial \varphi ^{\prime }} \frac{d \varphi }{d x} \right] = 0. \end{aligned}$$
(46)
Fig. 14
figure 14

Indefinitely extended two phase continuum, one-dimensional with two phases a field plot, b profile plot of the order parameter

From Eq. (46) follows

$$\begin{aligned} \psi ^{{{\mathrm {int}}}} - \frac{\partial \psi ^{{{\mathrm {int}}}}}{\partial \varphi ^{\prime }} \frac{d \varphi }{d x} = \text {const.} = c. \end{aligned}$$
(47)

The constant c is found to be \(c=0\) by evaluation of Eq. (47) regarding the specific order parameter \(\varphi =0\) with \(\psi (\varphi =0) = 0\) and \(\left. \frac{d \varphi }{d x} \right| _{\varphi =0} = 0\). Analogous to Eq. (8), it is

$$\begin{aligned} \begin{aligned} \psi ^{{{\mathrm {int}}}}&= 16 {\hat{g}} \alpha ^* f^{{{\mathrm {int}}}} + \frac{1}{2} \beta ^* |\varphi ^{\prime }|^2, \\ \frac{\partial \psi ^{{{\mathrm {int}}}}}{\partial \varphi ^\prime }&= \beta ^* \varphi ^{\prime }. \end{aligned} \end{aligned}$$
(48)

Inserting Eq. (48) in (47) leads to

$$\begin{aligned} d x = \sqrt{\frac{\beta ^*}{32 \alpha ^* {\hat{g}} f^{{\mathrm {int}}}}} \, d \varphi . \end{aligned}$$
(49)

With Eq. (49), the integral with respect to x in Eq. (44) can be rewritten as an integral with respect to \(\varphi \). Eventually,

$$\begin{aligned} F^{{{\mathrm {int}}}} = \sqrt{32 \alpha ^* \beta ^* {\hat{g}} } \int _{0}^{1} \sqrt{f^{{\mathrm {int}}}} \, d \varphi = \gamma \end{aligned}$$
(50)

is obtained. Evaluation of the integral leads to

$$\begin{aligned} \frac{\sqrt{32 \alpha ^* \beta ^* {\hat{g}} }}{6} = \gamma \end{aligned}$$
(51)

Furthermore, Eq. (49) can be used to derive

$$\begin{aligned} \left. \frac{d \varphi }{d x} \right| _{x=0} = \left. \sqrt{\frac{32 \alpha ^* {\hat{g}} f^{{{\mathrm {int}}}}}{\beta ^*}} \right| _{\varphi =\frac{1}{2}} = \sqrt{\frac{2 \alpha ^* {\hat{g}}}{\beta ^*}} = \frac{1}{l}. \end{aligned}$$
(52)

By solving Eqs. (51) and (52), the parameters \(\alpha ^*\) and \(\beta ^*\) according to Eq. (9) are determined.

Numerical implementation with two spatial dimensions

For the sake of simplicity, the two-dimensional plane strain case is considered. The weak forms

$$\begin{aligned} \begin{aligned}&\int _{\varOmega } \delta \varphi _i \left( \frac{1}{M} {\dot{\varphi }}_i + \frac{\partial \psi ^{{{\mathrm {el}}}}}{\partial \varphi _i} + 12 \, \frac{\gamma }{l} \frac{\partial f^{{{\mathrm {int}}}}}{\partial \varphi } + \varDelta g \,\frac{\partial f^{{{\mathrm {bulk}}}}}{\partial \varphi _i} \right) \\&\quad + \frac{3}{2} \gamma l \left( {\varvec{\nabla }}\delta \varphi _i \right) \cdot \left( {\varvec{\nabla }} \varphi _i\right) \, dV = 0 \end{aligned} \end{aligned}$$
(53)

and

$$\begin{aligned} \int _{\varOmega } \delta {\varvec{\varepsilon }} : {\varvec{\sigma }} \, dV = 0 \end{aligned}$$
(54)

of Eqs. (12) and (13) are used. A domain \(\varOmega \) with the continuous volume V is approximated by \(N_{{\mathrm {el}}}\) elements. The assembly of the system is described by

$$\begin{aligned} V \approx {\tilde{V}} = \bigcup \limits _{e = 1}^{N_{{\mathrm {el}}}} \varOmega _e, \end{aligned}$$
(55)

where \(\varOmega _e\) occupies the element domain. Using the following equations, the displacement \({\varvec{u}}\) as well as the order parameters \(\varphi _i\) and their rates \(\dot{\varphi _i}\) are discretized,

$$\begin{aligned} {\varvec{u}} \approx \sum _{I=1}^{n_{{\mathrm {el}}}} N_I \hat{{\varvec{u}}}_I, \qquad \varphi _i \approx \sum _{I=1}^{n_{{\mathrm {el}}}} N_I {\hat{\varphi }}_{i I}, \qquad \dot{\varphi _i} \approx \sum _{I=1}^{n_{{\mathrm {el}}}} N_I \hat{{\dot{\varphi }}}_{i I}. \end{aligned}$$
(56)

Here, \(N_I\) is the bilinear shape function of node I and \(n_{{\mathrm {el}}}\) is the total number of nodes per element. The superimposed hat \(\hat{\left( \bullet \right) }\) indicates nodal quantities. With the matrices

$$\begin{aligned} {\varvec{B^u}}_I = \begin{bmatrix} \frac{\partial N_{I}}{\partial x} &{} 0 \\ 0 &{} \frac{\partial N_{I}}{\partial y} \\ \frac{\partial N_{I}}{\partial y} &{} \frac{\partial N_{I}}{\partial x} \\ \end{bmatrix} \quad \text {and} \quad {\varvec{B}}_I^{\varphi _i} = \begin{bmatrix} \frac{\partial N_{I}}{\partial x} \\ \frac{\partial N_{I}}{\partial y} \\ \end{bmatrix} \end{aligned}$$
(57)

the gradients are discretized by

$$\begin{aligned} {\varvec{\varepsilon }} \approx \sum _{I=1}^{n_{{\mathrm {el}}}} {\varvec{B^u}}_I \hat{{\varvec{u}}}_I \quad \text {and} \quad {\varvec{\nabla }} \varphi _i \approx \sum _{I=1}^{n_{{\mathrm {el}}}} {\varvec{B}}_I^{\varphi _i} {\hat{\varphi }}_{i I}. \end{aligned}$$
(58)

In Eq. (58), Voigt notation is applied for the symmetrical strain tensor \({\varvec{\varepsilon }}= \frac{1}{2} \left( {\varvec{\nabla u}} + ({\varvec{\nabla u}})^T \right) \). Analogously, the virtual field variables

$$\begin{aligned} \begin{aligned} \delta \varphi _i&\approx \sum _{I=1}^{n_{{\mathrm {el}}}} N_I \hat{\varphi _i}_I, \qquad {\varvec{\nabla }} \delta \varphi _i \approx \sum _{I=1}^{n_{{\mathrm {el}}}} {\varvec{B}}_I^{\varphi _i} \delta {\hat{\varphi }}_{i I}, \\ \delta {\varvec{\varepsilon }}&\approx \sum _{I=1}^{n_{{\mathrm {el}}}} {\varvec{B}}_I^{{\varvec{u}}} \delta \hat{{\varvec{u}}}_{I} \end{aligned} \end{aligned}$$
(59)

are approximated. According to the isoparametric concept, the geometry of the element is approximated with identical shape functions.

Applying discretization to the weak forms by inserting Eqs. (56), (58) and (59) in Eqs. (53) and (54) yields the nodal element residuals

$$\begin{aligned} \begin{aligned} R_I^{\varphi _i}&= \int _{\varOmega _{{\mathrm {el}}}} \left( N_I \frac{1}{M} N_J \hat{{\dot{\varphi }}}_i + N_I \left( \frac{\partial \psi ^{{{\mathrm {el}}}}}{\partial \varphi _i} + 12 \frac{\gamma }{l} \frac{\partial f^{{{\mathrm {int}}}}}{\partial \varphi _i} + \frac{\partial f^{{{\mathrm {bulk}}}}}{\partial \varphi _i} \right) + \frac{3}{2} \gamma l \left( {\varvec{B}}_I^{\varphi _i}\right) ^T {\varvec{B}}_J^{\varphi _i} {\hat{\varphi }}_i \right) \,dV_{{\mathrm {el}}} \end{aligned} \end{aligned}$$
(60)

for the \(i^{{{\mathrm {th}}}}\) phase field and

$$\begin{aligned} {\varvec{R}}^{{\varvec{u}}}_I = \int _{\varOmega _{{\mathrm {el}}}} \left( {\varvec{B^u}}_I \right) ^T {\varvec{{\mathcal {C}}}} \underbrace{\left( {\varvec{B^u}}_{J} \hat{{\varvec{u}}} - {\varvec{\varepsilon }}^0 \right) }_{{\varvec{\varepsilon }}^{{\mathrm {el}}}} \,dV_{{\mathrm {el}}} \end{aligned}$$
(61)

for the mechanical field. With the nodal residual vector \( {\varvec{R}}_I = \begin{pmatrix} {\varvec{R^u}}_I,&R_I^{\varphi _i},&\cdots ,&R_I^{\varphi _N} \end{pmatrix}^T \) and the residual vector of an element \( {\varvec{R}}_e = \begin{pmatrix} {\varvec{R}}_I,&\cdots ,&{\varvec{R}}_{n_{{\mathrm {el}}}} \end{pmatrix}^T\), the residual of the model

$$\begin{aligned} {\varvec{R}} \left( \hat{{\varvec{d}}},\hat{\dot{{\varvec{d}}}} \right) = \bigcup _{e=1}^{N_{{\mathrm {el}}}} {\varvec{R}}_e \end{aligned}$$
(62)

is assembled. The nodal residual vector \({\varvec{R}}_{I}\) depends on the nodal degrees of freedom \( \hat{{\varvec{d}}} = \begin{pmatrix} {\varvec{u}},&\varphi _i,&\cdots ,&\varphi _N \end{pmatrix}^T \) and their rates. In order to solve the nonlinear equation system \({\varvec{R}}={\varvec{0}}\) at each time step, the backward Euler method is utilized for discretization in time. The degrees of freedom \(\hat{{\varvec{d}}}\) in the current time step are computed with the Newton–Raphson method. This requires a system matrix consisting of a stiffness component and a damping component.

The nodal stiffness matrix \({\varvec{K}}_{IJ} \) reads

$$\begin{aligned} {\varvec{K}}_{IJ} = \begin{pmatrix} {\varvec{K^{uu}}} &{} {\varvec{K}}^{{\varvec{u}}\varphi _1} &{} \cdots &{} {\varvec{K}}^{{\varvec{u}}\varphi _i} &{} \cdots {\varvec{K}}^{{\varvec{u}}\varphi _N} \\ {\varvec{K}}^{\varphi _1 {\varvec{u}}} &{} K^{\varphi _1\varphi _1} &{} \cdots &{} K^{\varphi _1 \varphi _i} &{} \cdots K^{\varphi _1\varphi _N} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ {\varvec{K}}^{\varphi _i {\varvec{u}}} &{} K^{\varphi _i \varphi _1} &{} \cdots &{} K^{\varphi _i \varphi _i} &{} K^{\varphi _i \varphi _N} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ {\varvec{K}}^{\varphi _N {\varvec{u}}} &{} K^{\varphi _N \varphi _1} &{} \cdots &{} K^{\varphi _N \varphi _i} &{} K^{\varphi _N \varphi _N} \\ \end{pmatrix}_{IJ}, \end{aligned}$$
(63)

where the matrix entries are

$$\begin{aligned} {\varvec{K^{uu}}}_{IJ}&= \frac{\partial {\varvec{R^u}}_I}{\partial \hat{{\varvec{u}}}} = \int _{\varOmega _{{\mathrm {el}}}} \left( {\varvec{B^u}}_I \right) ^T {\varvec{{\mathcal {C}}}} {\varvec{B^u}}_{J} \, dV_{{\mathrm {el}}}, \end{aligned}$$
(64)
$$\begin{aligned} {\varvec{K}}^{{\varvec{u}} \varphi _i }_{IJ}&= \frac{\partial {\varvec{R^u}}_I}{\partial {\hat{\varphi }}_i} = \int _{\varOmega _{{\mathrm {el}}}} \left( {\varvec{B^u}}_I \right) ^T \frac{\partial h_i}{\partial \varphi _i} \left( \left( {\varvec{{\mathcal {C}}}}^{\alpha }_i - {\varvec{{\mathcal {C}}}}^{\gamma } \right) {\varvec{\varepsilon }}^{{\mathrm {el}}} - {\varvec{{\mathcal {C}}}} \tilde{{\varvec{\varepsilon }}}_i \right) N_J \, dV_{{\mathrm {el}}}, \end{aligned}$$
(65)
$$\begin{aligned} {\varvec{K}}^{ \varphi _i{\varvec{u}} }_{IJ}&= \left( {\varvec{K}}^{{\varvec{u}} \varphi _i }_{IJ}\right) ^T, \nonumber \\ K^{\varphi _i \varphi _i }_{IJ}&= \frac{\partial R^{\varphi _i}_I}{\partial {\hat{\varphi }}_i} \nonumber \\&=\int _{\varOmega _{{\mathrm {el}}}} N_I \left( \frac{\partial ^2 \psi ^{{{\mathrm {el}}}}}{\partial \varphi _i^2} + 12 \frac{\gamma }{l} \frac{\partial ^2 f^{{{\mathrm {int}}}}}{\partial \varphi _i^2} + \frac{\partial ^2 f^{{{\mathrm {bulk}}}}}{\partial \varphi _i^2} \right) N_J + \frac{3}{2} \gamma l \left( {\varvec{B}}_I^{\varphi _i}\right) ^T {\varvec{B}}_J^{\varphi _i} \, dV_{{\mathrm {el}}}, \end{aligned}$$
(66)
$$\begin{aligned} K^{\varphi _i \varphi _j }_{IJ}&= \frac{\partial R^{\varphi _i}_I}{\partial {\hat{\varphi }}_j} \nonumber \\&= \int _{\varOmega _{{\mathrm {el}}}} N_I \left( \frac{\partial ^2 \psi ^{{{\mathrm {el}}}}}{\partial \varphi _j \partial \varphi _i} + 12 \frac{\gamma }{l} \frac{\partial ^2 f^{{{\mathrm {int}}}}}{\partial \varphi _j \partial \varphi _i} + \frac{\partial ^2 f^{{{\mathrm {bulk}}}}}{\partial \varphi _j \partial \varphi _i} \right) N_J \, dV_{{\mathrm {el}}}, \nonumber \\ K^{ \varphi _j \varphi _i }_{IJ}&= K^{ \varphi _i \varphi _j }_{IJ}. \end{aligned}$$
(67)

Note the symmetry of \({\varvec{K}}_{IJ} \). The corresponding damping matrix reads

$$\begin{aligned} \begin{aligned} {\varvec{D}}_{IJ} =&- \frac{\partial {\varvec{R}}_{{\mathrm {e}}}}{\partial \hat{\dot{{\varvec{d}}}}} \\&=\frac{1}{M} \int _{\varOmega _{{\mathrm {el}}}} N_I N_J \, dV_{{\mathrm {el}}} \begin{pmatrix} {\varvec{0}}^{(2\times 2)} &{} {\varvec{0}}^{(2\times N )} \\ {\varvec{0}}^{(N \times 2)} &{} {\varvec{I}}^{(N\times N)} \end{pmatrix} \end{aligned} \end{aligned}$$
(68)

which concludes the discretization of the problem. As common in the finite element method, the Gaussian quadrature rule is used for numeric evaluation of the integrals.

Shape deformation according to the PTMC

Table 4 Deformation gradients \({\varvec{P}}\) obtained from the PTMC with material constants of pure iron
Table 5 Martensite shape strains \(\tilde{{\varvec{\varepsilon }}}\) obtained from the PTMC with material constants of pure iron
Table 6 Deformation gradients \({\varvec{P}}\) obtained from the PTMC with material constants of pure iron with adapted lattice constant ratio
Table 7 Martensite shape strains \(\tilde{{\varvec{\varepsilon }}}\) obtained from the PTMC with material constants of pure iron with adapted lattice constant ratio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, M., Kuntz, M., Autenrieth, H. et al. Simulation of martensitic microstructures in a low-alloy steel. Arch Appl Mech 91, 1641–1668 (2021). https://doi.org/10.1007/s00419-020-01845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01845-6

Keywords

Navigation