Skip to main content
Log in

Generalized thermo-viscoelasticity with memory-dependent derivative: uniqueness and reciprocity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This article theoretically demonstrates the reciprocity and uniqueness theorems for generalized theory of thermo-viscoelasticity involving memory-dependent derivative (MDD). To prove the theorems, a thermo-viscoelastic initial-boundary value problem under the domain of three-phase-lag (TPL) model is taken into consideration for an isotropic, homogeneous medium. The theorems are proved with the help of the Laplace transform of the thermophysical quantities. Finally, a few special cases in the generalized theory of thermo-elasticity and thermo-viscoelasticity with MDD and without MDD are derived from the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freudenthal, A.M.: Effect of rheological behaviour on thermal stress. J. Appl. Phys. 25(9), 1110–1117 (1954)

    Google Scholar 

  2. Gutierrez-Lemini, D.: Engineering Viscoelasticity. Springer, New York (2014)

    MATH  Google Scholar 

  3. Shaw, M.T., MacKnight, W.J.: Introduction to Polymer Viscoelasticity. Wiley, Hoboken (2004)

    Google Scholar 

  4. Brinson, H.F., Catherine, L.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, New York (2008)

    Google Scholar 

  5. Gross, B.: Mathematical Structure of the Theories of Viscoelasticity. Hemann, Paris (1953)

    MATH  Google Scholar 

  6. Gurtin, M., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Rat. Mech. Anal. 11(1), 291–356 (1962)

    MathSciNet  MATH  Google Scholar 

  7. Stratonova, M.M.: A method of solving dynamic problems of viscoelasticity. Poly. Mech. 7(4), 646–648 (1971)

    Google Scholar 

  8. Malyi, V.I.: An approximate method of solving viscoelasticity problems. Stren. Mater. 8(8), 906–909 (1976)

    Google Scholar 

  9. Il’yushin, A.: Method of approximations for solving problems of linear theory of thermoviscoelasticity. Poly. Mech. 4(2), 149–158 (1968)

    Google Scholar 

  10. Pobedrya, B.E.: Coupled problems of thermoviscoelasticity. Poly. Mech. 5(3), 353–358 (1969)

    Google Scholar 

  11. Kovalenko, A.D., Karnaukhov, V.G.: A linearized theory of thermoviscoelasticity. Poly. Mech. 8(2), 194–199 (1972)

    MATH  Google Scholar 

  12. Medri, G.: Coupled thermoviscoelasticity: a way to the stress-strain analysis of polymeric industrial components. Meccanica 23(4), 226–231 (1988)

    Google Scholar 

  13. Sherief, H.H., Allam, M.N., El-Hagary, M.A.: Generalized theory of thermoviscoelasticityn and a half-space problem. Int. J. Thphys. 32, 1271–1275 (2011)

    Google Scholar 

  14. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    MATH  Google Scholar 

  15. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71(3), 383–390 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Youssef, H.M.: Theory of two-temperature thermoelasticity without energy dissipation. J. Therm. Stress. 34(2), 138–146 (2011)

    Google Scholar 

  17. Tzou, D.Y.: A unified field approach for heat conduction from macro to micro scales. J. Heat Transf. 117(1), 8–16 (1995)

    Google Scholar 

  18. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Google Scholar 

  19. Sarkar, I., Mukhopadhyay, B.: A domain of influence theorem for generalized thermoelasticity with memory-dependent derivative. J. Therm. Stress. 42(11), 1447–1457 (2019)

    Google Scholar 

  20. Singh, B., Pal, S., Barman, K.: Thermoelastic interaction in the semi-infinite solid medium due to three-phase-lag effect involving memory-dependent derivative. J. Therm. Stress. 42(7), 874–889 (2019)

    Google Scholar 

  21. Sarkar, I., Mukhopadhyay, B.: On energy, uniqueness theorems and variational principle for generalized thermoelasticity with memory-dependent derivative. Int. J. Heat Mass Transf. 149, 119112 (2020)

    Google Scholar 

  22. Singh, B., Pal, S., Barman, K.: Eigenfunction approach to generalized thermo-viscoelasticity with memory dependent derivative due to three-phase-lag heat transfer. J. Therm. Stress. (2020). https://doi.org/10.1080/01495739.2020.1770642

    Article  Google Scholar 

  23. Sarkar, I., Mukhopadhyay, B.: On the spatial behavior of thermal signals in generalized thermoelasticity with memory-dependent derivative. Acta Mech. 231, 2989–3001 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Singh, B., Pal, S.: Magneto-thermoelastic interaction with memory response due to laser pulse under Green–Naghdi theory in an orthotropic medium. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1798780

    Article  Google Scholar 

  25. Sarkar, I., Mukhopadhyay, B.: Thermo-viscoelastic interaction under dual-phase-lag model with memory-dependent derivative. Waves Rand Complex Media (2020). https://doi.org/10.1080/17455030.2020.1736733

    Article  Google Scholar 

  26. Singh, B., Pal, S., Barman, K.: Memory-dependent derivative under generalized three-phase-lag thermoelasticity model with a heat source. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-10-2019-0182

    Article  Google Scholar 

  27. Singh, B., Sarkar, I., Pal, S.: Temperature-rate-dependent thermoelasticity theory With memory-dependent derivative: energy, uniqueness theorems, and variational principle. J. Heat Transf. 142(10), 102103 (2020)

    Google Scholar 

  28. Shaw, S.: Theory of generalized thermoelasticity with memory-dependent derivatives. J. Eng. Mech. 145(3), 04019003 (2019)

    Google Scholar 

  29. Shaw, S.: A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 228, 2675–2689 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Xu, Z.D., Guo, Y.Q., Dong, Y., Huang, X.: A generalized magneto-thermoviscoelastic problem of a single-layer plate for vibration control considering memory-dependent heat transfer and nonlocal effect. J. Heat Transf. 141(8), 082002 (2019)

    Google Scholar 

  31. Li, Y., Zhang, P., Li, C., He, T.: Fractional order and memory-dependent analysis to the dynamic response of a bi-layered structure due to laser pulse heating. Int. J. Heat Mass Transf. 144, 118664 (2019)

    Google Scholar 

  32. Wang, J.-L., Li, H.-F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62(3), 1562–1567 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Ezzat, M.A., El-karamany, A.S., El-Bary, A.A.: Generalized thermoviscoelasticity with memory-dependent derivative. Int. J. Mech. Sci. 89, 470–475 (2014)

    Google Scholar 

  34. Aldawody, D.A., Hendy, M.H., Ezzat, M.A.: On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative. Microsyst. Technol. 25, 2915–2929 (2019)

    Google Scholar 

  35. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct. Syst. 19(5), 539–551 (2017)

    Google Scholar 

  36. Ezzat, M.A., El-Karamany, A.S.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stress. 39, 1035–1050 (2016)

    Google Scholar 

  37. Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer, Netherlands (1975)

    MATH  Google Scholar 

  38. Maysel, V.: The Temperature Problem of the Theory of Elasticity (Russian). Ukrainian Academy of Sciences, Kiev (1951)

    Google Scholar 

  39. Predeleanu, M.: On thermal stresses in visco-elastic bodies. Bull. Math. Soc. Sci. Math. Phys. Rpubl. Popul. Roum. 3(2), 223–228 (1959)

    MathSciNet  MATH  Google Scholar 

  40. Ionescu-Cazimir, V.: Problem of linear thermoelaasticity: theorems on reciprocity I. Bull. Acad. Pol. Sci. Tech. 12, 473–480 (1964)

    Google Scholar 

  41. Othman, M.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation times. Mech. Mech. Eng. 7, 77–80 (2004)

    Google Scholar 

  42. Ezzat, M.A., El-Karamany, A.S.: On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can. J. Phys. 81, 823–833 (2003)

    Google Scholar 

  43. Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity for anispotropic media. J. Therm. Stress. 25(6), 507–522 (2011)

    Google Scholar 

  44. Ezzat, M.A., El-Karamany, A.S.: Two-temperature Green–Naghdin theory of type III in linear thermoviscoelastic anisotropic solid. Appl. Math. Model. 39(8), 2155–2171 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Ezzat, M.A., El-Karamany, A.S.: The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(11), 1275–1284 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Ezzat, M.A., El-Karamay, A.S., Fayik, M.A.: Fractional order theory of thermoelasticity. Arch. Appl. Mech. 82(4), 557–572 (2012)

    MATH  Google Scholar 

  47. Sherief, H.H., El-Sayed, A., El-Latief, A.A.: Fractional order theory of thermoelasticity. Int. J. Solid. Struct. 47(2), 269–275 (2010)

    MATH  Google Scholar 

  48. Sherief, H.H., El-Hagary, M.A.: Fractional order theory of thermo-viscoelasticity and application. Mech. Time Depend. Mater. (2019). https://doi.org/10.1007/s11043-019-09415-2

    Article  Google Scholar 

  49. Marin, M., Craciun, E.M.: Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials. Compos. Part B: Eng. 126, 27–37 (2017)

    Google Scholar 

  50. Marin, M.: Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381–387 (2017)

    Google Scholar 

  51. Il’yushin, A., Pobedrya, B.: Fundamentals of the Mathematical Theory of Thermal Viscoelasticity. Science, Moscow (1970)

    Google Scholar 

  52. Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1982)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for their valuable comments and suggestions to improve the quality of the paper and Council of Scientific and Industrial Research (CSIR), New Delhi (Grant No. 08/003(0116)/2016-EMR-I), for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Sarkar.

Ethics declarations

Conflict of Interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, I., Mukhopadhyay, B. Generalized thermo-viscoelasticity with memory-dependent derivative: uniqueness and reciprocity. Arch Appl Mech 91, 965–977 (2021). https://doi.org/10.1007/s00419-020-01799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01799-9

Keywords

Navigation