Skip to main content
Log in

Well-posedness for thermo-electro-viscoelasticity of Green–Naghdi type

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study the linear theory of thermo-electro-viscoelasticity of Green–Naghdi type for the case of a one-dimensional body. For the corresponding mathematical model, we prove a uniqueness theorem of the solution to the mixed boundary-initial-value problem by means of the Laplace transform after rewriting the constitutive equations in an appropriate form. Moreover, we derive a result of continuous dependence upon the supply terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  2. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bargmann, S., Steinmann, P.: Classical results for a non-classical theory: remarks on thermodynamic relations in Green-Naghdi thermo-hyperelasticity. Continuum Mech. Therm. 19(1–2), 59–66 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bargmann, S., Steinmann, P., Jordan, P.M.: On the propagation of second-sound in linear and nonlinear media: results from Green-Naghdi theory. Phys. Lett. A 372, 4418–4424 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Straughan, B.: Heat waves. Applied Mathematical Sciences. Springer 177,(2011)

  6. Ieşan, D.: Thermopiezoelectricity without energy dissipation. Proc. R. Soc. A 464, 631–656 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Giorgi, C., Grandi, D., Pata, V.: On the Green-Naghdi type III heat conduction model. Discrete Cont. Dyn. B 19, 2133–2143 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Chirilă, A., Marin, M., Montanaro, A.: On adaptive thermo-electro-elasticity within a Green-Naghdi type II or III theory. Continuum Mech. Therm. 31, 1453–1475 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  9. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Continuum Mech. Therm. 29(6), 1365–1374 (2017)

    Article  ADS  Google Scholar 

  10. Othman, M.I.A., Marin, M.: Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory. Res. Phys. 7, 3863–3872 (2017)

    Google Scholar 

  11. Podio-Guidugli, P.: For a statistical interpretation of Helmholtz-thermal displacement. Continuum Mech. Therm. 28, 1705–1709 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  12. Giorgi, C., Montanaro, A.: Constitutive equations and wave propagation in Green-Naghdi type II and III thermo-electroelasticity. J. Therm. Stress. 39(9), 1051–1073 (2016). https://doi.org/10.1080/01495739.2016.1192848

    Article  Google Scholar 

  13. Montanaro, A.: On thermo-electro-mechanical simple materials with fading memory-restrictions of the constitutive equations in a Green-Naghdi type theory. Meccanica 52(13), 3023–3031 (2017)

    Article  MathSciNet  Google Scholar 

  14. Wilkes, N.S.: Thermodinamic restrictions on viscoelastic materials. Q. J. Mech. Appl. Math. 30(2), 209–221 (1977)

    Article  Google Scholar 

  15. Coleman, B.D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 353–370 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  16. Coleman, B.D.: Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 13, 1–46 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  17. Montanaro, A.: On thermo-electro-viscoelastic relaxation functions in a Green-Naghdi type theory. J. Therm. Stress. 43(10), 1205–1233 (2020)

    Article  Google Scholar 

  18. Green, A.E., Naghdi, P.M.: On thermomechanics and the nature of the second law. Proc. Roy. Soc. London Ser. A 357, 253–270 (1977)

    MathSciNet  ADS  Google Scholar 

  19. Zeng, Y.: Large time behavior of solutions to nonlinear viscoelastic model with fading memory. Acta Math. Sci. 32B(1), 219–236 (2012)

    Article  MathSciNet  Google Scholar 

  20. Babaeia, B., Velasquez-Maob, A.J., Prysec, K.M., Mc-Connaugheyc, W.B., Elsonc, E.L., Genind, G.M.: Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. J. Mech. Behav. Biomed. 84, 198–207 (2018)

    Article  Google Scholar 

  21. Ciarletta, M., Scalia, A.: On some theorems in the linear theory of viscoelastic materials with voids. J. Elasticity 25, 149–158 (1991)

    Article  MathSciNet  Google Scholar 

  22. Quintanilla, R.: Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete Cont. Dyn. B 1(4), 463 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Leseduarte, M.C., Quintanilla, R.: On uniqueness and continuous dependence in type III thermoelasticity. J. Math. Anal. Appli. 395, 429–436 (2012)

    Article  MathSciNet  Google Scholar 

  24. Bhatti, M.M., Lu, D.Q.: Analytical study of the head-on collission process between hydroelastic solitary waves in the presence of a uniform current. Symmetry 11(3), 333 (2019)

    Article  Google Scholar 

  25. Bhatti, M.M., Lu, D.Q.: Head-on collision between two hydroelastic solitary waves in shallow water. Qual. Theor. Dyn. Syst. 17, 103–122 (2018)

    Article  MathSciNet  Google Scholar 

  26. Marin, M., Vlase, S., Păun, M.: Considerations on double porosity structure for micropolar bodies. AIP Adv. 5, 037113 (2015)

    Article  ADS  Google Scholar 

  27. Groza, G., Mitu, A., Pop, N., Sireteanu, T.: Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model. An. St. Univ. Ovidius Constanta 26(1), 125–139 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  29. Day, W.A.: An objection to using entropy as a primitive concept in continuum thermodynamics. Acta Mech. 27, 251–255 (1977)

    Article  Google Scholar 

  30. Zanelli, L., Montanaro, A., Carniel, E.L., Pavan, P.G., Natali, A.N.: The study of equivalent material parameters in a hyperelastic model. Int. J. Non-Linear Mech. 89, 142–150 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Ethics declarations

Conflict of interest

The authors declare that for the present article, there is no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirilă, A., Marin, M. & Montanaro, A. Well-posedness for thermo-electro-viscoelasticity of Green–Naghdi type. Continuum Mech. Thermodyn. 34, 39–60 (2022). https://doi.org/10.1007/s00161-021-01039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01039-7

Navigation