Skip to main content
Log in

Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH)

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This current work considers the utilization of the completely Lagrangian technique, smoothed particle hydrodynamics to improve the 3D finite element model for numerical analysis of the friction stir welding (FSW) in the air and underwater conditions. This technique was primarily applied to simulate fluid motion because of various advantages compared to conventionally grid-based methods. Newly, its usage has been developed to analyze the metal-forming analysis. The temperature history, strain and stress distributions during the FSW process in the air, as well as underwater, were considered. Besides the cooling influence, the effect of traveling speed, friction coefficient, mesh size and the mass scaling technique to find the converged model and decrease the CPU time were studied. The improved model is confirmed by comparing the numerical welding temperature with experimental outcomes. There was close compatibility between finite element analysis and experimental results. The conclusions indicated that the lower peak temperature was achieved due to higher cooling effect in underwater welding in comparison with conventional welding. Moreover, the peak temperature and strain rate decreased as traveling speed increased for both welding conditions, while stress values increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ahmadnia, M., Shahraki, S., Kamarposhti, M.A.: Experimental studies on optimized mechanical properties while dissimilar joining AA6061 and AA5010 in a friction stir welding process. Int. J. Adv. Manuf. Technol. 87, 2337–2352 (2016)

    Article  Google Scholar 

  2. Deepandurai, K., Parameshwaran, R.: Multiresponse optimization of FSW parameters for cast AA7075/SiCp composite. Mater. Manuf. Processes 31, 1333–1341 (2016)

    Article  Google Scholar 

  3. Ghetiya, N.D., Patel, K.M., Kavar, A.J.: Multi-objective optimization of FSW process parameters of aluminium alloy using Taguchi-based grey relational analysis. Trans. Indian Inst. Met. 69, 917–923 (2016)

    Article  Google Scholar 

  4. Ding, W., ChuanSong, W.: Effect of ultrasonic vibration exerted at the tool on friction stir welding process and joint quality. J. Manuf. Process. 42, 192–201 (2019)

    Article  Google Scholar 

  5. Malopheyev, S., Vysotskiy, I., Kulitskiy, V., Mironov, S., Kaibyshev, R.: Optimization of processingmicrostructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mater. Sci. Eng. A 662, 136–143 (2016)

    Article  Google Scholar 

  6. Mohd Hanapi, M.H., Hussain, Z., Almanar, I.P., Abu Seman, A.: Optimization processing parameter of 6061-T6 alloy friction stir welded using Taguchi technique. Mater. Sci. Forum 840, 294–298 (2016)

    Article  Google Scholar 

  7. She, W.K., Lei, W.J., Wen, W.: underwater friction stir welding of ultrafine grained 2017 aluminum alloy. J. Cent. South Univ. 19, 2081–2085 (2012)

    Article  Google Scholar 

  8. Liu, H.J., Zhang, H.J., Huang Yand, L.: Mechanical properties of underwater friction stir welded 2219 aluminum alloy. Trans. Nonferrous Metals Soc. China 20, 1387–1391 (2009)

    Article  Google Scholar 

  9. Zhang, H.J., Liu, H.J., Yu, L.: Effect of water cooling on the performances of friction stir welding heat- zone. JMEPEG 21, 1182–1187 (2011)

    Article  Google Scholar 

  10. Zhang, H.J., Liu, H.J., Yu, L.: Thermal modeling of underwater friction stir welding of high strength aluminum alloy. Trans. Nonferrous Metals Soc. China 23, 1114–1122 (2013)

    Article  Google Scholar 

  11. Wang, B.B., Chen, F.F., Liu, F., Wang, W.G., Xue, P., Ma, Z.Y.: Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling, Journal of Materials Science and Technology, 2017, https://doi.org/10.1016/j.jmst.2017.01.016 (2017)

  12. Heirani, F., Abbasi, A., Ardestani, M.: Effects of processing parameters on microstructure and mechanicalbehaviors of underwater friction stir welding of Al5083 alloy”. J. Manuf. Process. 25, 77–84 (2017)

    Article  Google Scholar 

  13. Rathinasuriyan, C., Senthil Kumar, V.S., Shanbhag, A.G.: Radiography and corrosion analysis of sub-merged friction stir welding of AA6061-T6 alloy. Proc. Eng. 97, 810–818 (2014)

    Article  Google Scholar 

  14. Fathi, J., Ebrahimzadeh, P., Farasati, R., Teimouri, R.: Friction stir welding of aluminum 6061-T6 in presence of watercooling: Analyzing mechanical properties and residual stress distribution. Int. J. Lightweight Mater. Manuf. 2, 107e115 (2019)

    Google Scholar 

  15. Qian, J., Li, J., Sun, F., Xiong, J., Zhang, F., Lin, X.: An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scr. Mater. 68, 175–178 (2012)

    Article  Google Scholar 

  16. Fraser, K., St-Georges, L., Kiss, L.: Optimization of friction stir welding tool advance speed via Monte–Carlo simulation of the friction stir welding process. Materials 7, 3435–3452 (2014)

    Article  Google Scholar 

  17. Chen, G., Ma, Q., Zhang, S., Wu, J., Zhang, G., Shi, Q.: Computational fluid dynamics simulation of friction stir welding: a comparative study on different frictional boundary conditions. J. Mater. Sci. Technol. 34, 128–134 (2017)

    Article  Google Scholar 

  18. Paulo, R.M.F., Carlone, P., Paradiso, V., Valente, R.A.F., Teixeira-Dias, F.: Prediction of friction stir welding effects on AA2024-T3 plates and stiffened panels using a shell-based finite element model. Thin-Walled Struct. 120, 297–306 (2017)

    Article  Google Scholar 

  19. Feulvarch, E., Roux, J.C., Bergheau, J.M.: A simple and robust moving mesh technique for the finite element simulation of friction stir welding. J. Comput. Appl. Math. 246, 269–277 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hossfeld, M.: A fully coupled thermomechanical 3D model for all phases of friction stir welding. In Proceedings of the 11th International Symposium on Friction Stir Welding, Cambridge, UK, 7–19 May (2016)

  21. Liu, G.R., Zhang, G.Y., Gu, Y.T., Wang, Y.Y.: A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput. Mech. 36, 421–430 (2005)

    Article  MathSciNet  Google Scholar 

  22. Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79, 2151–2163 (2001)

    Article  Google Scholar 

  23. Atluri, S.N., Shen, S.: The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method. Adv. Comput. Math. 23, 73–93 (2005)

    Article  MathSciNet  Google Scholar 

  24. Fraser, K., Kiss, L.I., St-Georges, L.: Hybrid thermo-mechanical contact algorithm for 3D SPH-FEM multi-physics simulations. In Proceedings of the 4th International Conference on Particle-Based Method, Barcelona, Spain, 28–30 September (2015)

  25. Guo, X.-G., Li, M., Dong, Z.-G., Zhai, R.-F., Jin, Z.-J., Kang, K.: Smooth particle hydrodynamics modeling of cutting force in milling process of TC4. Adv. Manuf. https://doi.org/10.1007/s40436-019-00276-z

  26. Riahi, M., Nazari, H.: Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int. J. Adv. Manuf. Technol. 55, 143–152 (2011)

    Article  Google Scholar 

  27. Prasanna, P., Subba Roa, B., Krishna Mohana Rao, G.: Finite element modeling formaximum temperature in friction stir welding and its validation. Int. J. Adv. Manuf. Technol. 51, 925–933 (2010)

    Article  Google Scholar 

  28. Schmidt, H., Hattel, J., Wert, J.: An analytical model for the heat generation in friction stir welding. Model. Simul. Mater. Sci. Eng. 12, 143–157 (2004)

    Article  Google Scholar 

  29. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  Google Scholar 

  30. Bonet, J., Lok, T.-S.: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180(1–2), 97–115 (1999)

    Article  MathSciNet  Google Scholar 

  31. Liu, G.-R., Liu, M.B.: Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore (2003)

    Book  Google Scholar 

  32. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. in Proceedings of the \(7^{{\rm th}}\) International Symposium on Ballistics. 1983. The Netherlands (1983)

  33. Abbasi, M., Bagheri, B., Keivani, R.: Thermal analysis of friction stir welding process and investigation into affective parameters using simulation”. J. Mech. Sci. Technol. 29(2), 861–866 (2015)

    Article  Google Scholar 

  34. Hibbitt, K.: Sorensen ABAQUS/Explicit: user’s manual. (Vol. 1). Hibbitt, Karlsson and Sorenson Incorporated. (2001)

  35. Ansari, M.A., Behnagh, R.A.: Numerical study of friction stir welding plunging phase using smoothed particle hydrodynamics. Model. Simul. Mater. Sci. Eng. 27(5), 055006 (2019)

    Article  Google Scholar 

  36. Fraser, K., Kiss, L.I., St-Georges, L., Drolet, D.: Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach. Metals 8(2), 101 (2018)

    Article  Google Scholar 

  37. Cocchetti, G., Pagani, M., Perego, U.: Selective mass scaling for distorted solid-shell elements in explicit dynamics: optimal scaling factor and stable time step estimate. Int. J. Numer. Methods Eng. 101, 700–31 (2015)

    Article  MathSciNet  Google Scholar 

  38. Nicholson, D.W.: Finite Element Analysis: Thermomechanics of Solids. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  39. Hajinezhad, M., Azizi, A.: Numerical analysis of effect of coolant on the transient temperature in underwater friction stir welding of Al6061-T6. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-7652-7

    Article  Google Scholar 

  40. Bagheri, B., Abbasi, M., Abdollahzadeh, A., Omidvar, H.: Advanced approach to modify friction stir spot welding process. Metals Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00416-x

    Article  Google Scholar 

  41. Barooni, O., Abbasi, M., Givi, M., Bagheri, B.: New method to improve the microstructure and mechanical properties of joint obtained using FSW. Int. J. Adv. Manuf. Technol. 93, 4371–4378 (2017)

    Article  Google Scholar 

  42. Abbasi, M., Givi, M., Bagheri, B.: Application of vibration to enhance the efficiency of friction stir processing. Trans. Nonferr. Metal. Soc. Chin. 29, 1393–1400 (2019)

    Article  Google Scholar 

  43. Ansari, M.A., Samanta, A., Behnagh, R.A., Ding, H.: An efficient coupled Eulerian–Lagrangian finite element model for friction stir processing. Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-018-3000-z

    Article  Google Scholar 

  44. Fouladi, S., Abbasi, M.: The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint. J. Mater. Process. Technol. 243, 23–30 (2017)

    Article  Google Scholar 

  45. Fraser, K.: Robust and efficient meshfree solid thermo-mechanics simulation of friction stir welding” Ph.D thesis, Université du Québec à Chicoutimi, Quebec, Canada, (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M., Abdolahzadeh, A. et al. Numerical analysis of cooling and joining speed effects on friction stir welding by smoothed particle hydrodynamics (SPH). Arch Appl Mech 90, 2275–2296 (2020). https://doi.org/10.1007/s00419-020-01720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01720-4

Keywords

Navigation