Skip to main content
Log in

Analytical approach for predicting vibration characteristics of an embedded elastic sphere in complex fluid

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Vibration characteristics of elastic nanostructures embedded in fluid medium have been used for biological and mechanical sensing and also to investigate the materials mechanical properties. The fluid medium surrounding the nanostructure is typically modeled as a Newtonian fluid. A novel approach based on the exact theory has been developed in this paper, to accurately predict the various vibration scenarios of an elastic sphere, in a compressible viscous fluid. Then, the analysis is extended to a viscoelastic medium using the Maxwell fluid model. To demonstrate the accuracy of the present approach, a comparison is made with the published theoretical results in the literature in some particular cases, which shows a very good agreement. The effects of fluid compressibility and viscoelasticity are discussed in details, and we demonstrate that the fluid compressibility plays a significant role in the vibration modes of an elastic sphere. Results also show that the different vibration modes of a sphere trigger a viscoelastic response in water–glycerol mixtures similar to that of literature. In addition, the obtained results can serve as benchmark solution in design of liquid sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verbridge, S.S., Bellan, L.M., Parpia, J.M., Craighead, H.G.: Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 6(9), 2109–2114 (2006)

    Article  Google Scholar 

  2. Portales, H., Goubet, N., Saviot, L., Adichtchev, S., Murray, D.B., Mermet, A., Duval, E., Pileni, M.P.: Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations. Proc. Natl. Acad. Sci. USA 105(39), 14784–14789 (2008)

    Article  Google Scholar 

  3. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533–537 (2008)

    Article  Google Scholar 

  4. Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6, 203–215 (2011)

    Article  Google Scholar 

  5. Ruijgrok, P.V., Zijlstra, P., Tchebotareva, A.L., Orrit, M.: Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. Nano Lett. 12(2), 1063–1069 (2012)

    Article  Google Scholar 

  6. Chakraborty, D., Leeuwen, E.V., Pelton, M., Sader, J.E.: Vibration of nanoparticles in viscous fluids. J. Phys. Chem. C 117(16), 8536–8544 (2013)

    Article  Google Scholar 

  7. Babincova, M., Sourivong, P., Babinec, P.: Resonant absorption of ultrasound energy as a method of HIV destruction. Med. Hypotheses 55(5), 450–451 (2000)

    Article  Google Scholar 

  8. Ford, L.H.: Estimate of the vibrational frequencies of spherical virus particles. Phys. Rev. E 67, 051924 (2003)

    Article  Google Scholar 

  9. Saviot, L., Murray, D.B., Mermet, A., Duval, E.: Comment on estimate of the vibrational frequencies of spherical virus particles. Phys. Rev. E 69, 023901 (2004)

    Article  Google Scholar 

  10. Talati, M., Jha, P.K.: Acoustic phonon quantization and low-frequency Raman spectra of spherical viruses. Phys. Rev. E 73, 011901 (2006)

    Article  Google Scholar 

  11. Sirotkin, S., Mermet, A., Bergoin, M., Ward, V., Van Etten, J.L.: Viruses as nanoparticles: structure versus collective dynamics. Phys. Rev. E 90, 022718 (2014)

    Article  Google Scholar 

  12. Hartland, G.V.: Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006)

    Article  Google Scholar 

  13. Fujii, M., Nagareda, T., Hayashi, S., Hayashi, S., Yamamoto, K.: Low-frequency Raman scattering from small silver particles embedded in SiO\(_2\) thin films. Phys. Rev. B 44(12), 6243–6248 (1991)

    Article  Google Scholar 

  14. Lamb, H.: On the vibrations of an elastic sphere. Proc. Lond. Math. Soc. 13, 189–212 (1882)

    MathSciNet  MATH  Google Scholar 

  15. Dubrovskiy, V.A., Morochnik, V.S.: Natural vibrations of a spherical inhomogeneity in an elastic medium. Phys. Solid Earth 17(7), 494–504 (1981)

    Google Scholar 

  16. Kheisin, D.E.: Radial oscillations of an elastic sphere in a compressible fluid. Fluid Dyn. 2, 53–55 (1967)

    Article  Google Scholar 

  17. Jain, D.L., Kanwal, R.P.: Scattering of elastic waves by an elastic sphere. Int. J. Eng. Sci. 18(9), 1117–1127 (1980)

    Article  MATH  Google Scholar 

  18. Duval, E., Boukenter, A., Champagnon, B.: Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman scattering. Phys. Rev. Lett. 56, 2052 (1986)

    Article  Google Scholar 

  19. Duval, E.: Far-infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys. Rev. B 46(9), 5795 (1992)

    Article  Google Scholar 

  20. Goupalov, S.V., Saviot, L., Duval, E.: Comment on Infrared and Raman selection rules for elastic vibrations of spherical nanoparticles. Phys. Rev. B 74, 197401 (2006)

    Article  Google Scholar 

  21. Bachelier, G., Margueritat, J., Mlayah, A., Gonzalo, J., Afonso, C.N.: Size dispersion effects on the low-frequency Raman scattering of quasispherical silver nanoparticles: experiment and theory. Phys. Rev. B 76, 235419 (2007)

    Article  Google Scholar 

  22. Reymond-Laruinaz, S., Saviot, L., Potin, V., Lopes, C., Vaz, F., Marco de Lucas, M.C.: Growth and size distribution of Au nanoparticles in annealed Au/TiO\(_2\) thin films. Thin Solid Films 553(28), 138–143 (2014)

    Article  Google Scholar 

  23. Stephanidis, B., Adichtchev, S., Gouet, P., McPherson, A., Mermet, A.: Elastic properties of viruses. Biophys. J. 93(4), 1354–1359 (2007)

    Article  Google Scholar 

  24. Liu, T.M., Chen, H.P., Wang, L.T., Wang, J.R., Luo, T.N., Chen, Y.J., Liu, S.I., Sun, C.K.: Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations. Appl. Phys. Lett. 94, 043902 (2009)

    Article  Google Scholar 

  25. Yang, S.C., Lin, H.C., Liu, T.M., Lu, J.T., Hung, W.T., Huang, Y.R., Tsai, Y.C., Kao, C.L., Chen, S.Y., Sun, C.K.: Efficient structure resonance energy transfer from microwaves to confined acoustic vibrations in viruses. Sci. Rep. 5, 18030 (2015)

    Article  Google Scholar 

  26. Galstyan, V., Pak, O.S., Stone, H.A.: A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. Phys. Fluids 27, 032001 (2015)

    Article  Google Scholar 

  27. Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  28. Jongen, T., Gatski, T.B.: Tensor representations and solutions of constitutive equations for viscoelastic fluids. Int. J. Eng. Sci. 43, 556–588 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics Part II. McGraw-Hill, New York (1946)

    MATH  Google Scholar 

  30. Mnassri, I., El Baroudi, A.: Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid. Acta Mech. Solida Sin. 30, 435–444 (2017)

    Article  Google Scholar 

  31. El Baroudi, A., Razafimahery, F.: Prediction of vibration behavior of micro-circular disks at low Reynolds number regime. J. Multiscale Model. 9(4), 1850005 (2018). (22 pages)

    Article  MathSciNet  Google Scholar 

  32. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, The Netherlands (1975)

    MATH  Google Scholar 

  33. Hu, M., Wang, X., Hartland, G.V., Mulvaney, P., Juste, J.P., Sader, J.E.: Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. J. Am. Chem. Soc. 125, 14925–14933 (2003)

    Article  Google Scholar 

  34. Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P., Sader, J.E.: Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111(24), 244502 (2013)

    Article  Google Scholar 

  35. Pelton, M., Sader, J.E., Burgin, J., Liu, M.Z., Guyot-Sionnest, P., Gosztola, D.: Damping of acoustic vibrations in gold nanoparticles. Nat. Nanotechnol. 4, 492–495 (2009)

    Article  Google Scholar 

  36. Major, T.A., Crut, A., Gao, B., Lo, S.S., Fatti, N.D., Vallee, F., Hartland, G.V.: Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. Phys. Chem. Chem. Phys. 15(12), 4169–4176 (2013)

    Article  Google Scholar 

  37. Saviot, L., Murray, D.B., Mermet, A., Duval, E.: Damping by bulk and shear viscosity of confined acoustic phonons for nanostructures in aqueous solution. J. Phys. Chem. B 111(25), 7457–7461 (2007)

    Article  Google Scholar 

  38. Juvé, V., Crut, A., Maioli, P., Pellarin, M., Broyer, M., Del Fatti, N., Vallée, F.: Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 10(5), 1853–1858 (2010)

    Article  Google Scholar 

  39. El Baroudi, A., Razafimahery, F., Rakotomanana, L.: Study of a spherical head model: analytical and numerical solutions in fluid-structure interaction approach. Int. J. Eng. Sci. 51, 1–13 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pelton, M., Chakraborty, D., Malachosky, E., Guyot-Sionnest, P., Sader, J.E.: Viscoelastic flows in simple liquids generated by vibrating nanostructures. Phys. Rev. Lett. 111, 244502 (2013)

    Article  Google Scholar 

  41. El Baroudi, A., Le Pommellec, J.Y.: Viscoelastic fluid effect on the surface wave propagation. Sens. Actuators A: Phys. 291, 188–195 (2019)

    Article  Google Scholar 

  42. Chakraborty, D., Sader, E.: Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids 27, 052002 (2015)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil El Baroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Table 7 Values of material parameters. \(\chi \) is the concentration of glycerol in water
Table 8 Fluid parameters for different glycerol mass fractions \(\chi \)

\(\bullet \) Matrix elements given in Eqs. (18) and (19) for the torsional and spheroidal vibrations (see Tables 7, 8):

$$\begin{aligned} T_{11}&=I_{n+\frac{1}{2}}\left( k_{s}a\right) \\ T_{12}&=K_{n+\frac{1}{2}}\left( k_{s}a\right) \\ T_{13}&=J_{n+\frac{1}{2}}\left( K_{s}a\right) \\ T_{21}&=(n+2)I_{n+\frac{1}{2}}\left( k_{s}a\right) -k_{s}aI_{n-\frac{1}{2}}\left( k_{s}a\right) \\ T_{22}&=(n+2)K_{n+\frac{1}{2}}\left( k_{s}a\right) +k_{s}aK_{n-\frac{1}{2}}\left( k_{s}a\right) \\ T_{23}&=(n+2)J_{n+\frac{1}{2}}\left( K_{s}a\right) -K_{s}aJ_{n-\frac{1}{2}}\left( K_{s}a\right) \\ T_{31}&=I_{n+\frac{1}{2}}\left( k_{s}b\right) \\ T_{32}&=K_{n+\frac{1}{2}}\left( k_{s}b\right) \\ S_{11}&=nJ_{n+\frac{1}{2}}\left( k_{c}a\right) -k_{c}aJ_{n+\frac{3}{2}}\left( k_{c}a\right) \\ S_{12}&=nY_{n+\frac{1}{2}}\left( k_{c}a\right) -k_{c}aY_{n+\frac{3}{2}}\left( k_{c}a\right) \\ S_{13}&=n(n+1)I_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{14}&=n(n+1)K_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{15}&=nJ_{n+\frac{1}{2}}\left( K_{c}a\right) -K_{c}aJ_{n+\frac{3}{2}}\left( K_{c}a\right) \\ S_{16}&=n(n+1)J_{n+\frac{1}{2}}\left( K_{s}a\right) \\ S_{21}&=nJ_{n+\frac{1}{2}}\left( k_{c}a\right) \\ S_{22}&=nY_{n+\frac{1}{2}}\left( k_{c}a\right) \\ S_{23}&=k_{s}aI_{n-\frac{1}{2}}\left( k_{s}a\right) -nI_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{24}&=-k_{s}aK_{n-\frac{1}{2}}\left( k_{s}a\right) -nK_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{25}&=nJ_{n+\frac{1}{2}}\left( K_{c}a\right) \\ S_{26}&=K_{s}aJ_{n-\frac{1}{2}}\left( K_{s}a\right) -nJ_{n+\frac{1}{2}}\left( K_{s}a\right) \\ S_{31}&=2k_{c}aJ_{n-\frac{1}{2}}\left( k_{c}a\right) -\left( n^2+3n+2+\frac{k_{c}^{2}a^2}{2}\right) J_{n+\frac{1}{2}}\left( k_{c}a\right) \\ S_{32}&=2k_{c}aY_{n-\frac{1}{2}}\left( k_{c}a\right) -\left( n^2+3n+2+\frac{k_{c}^{2}a^2}{2}\right) Y_{n+\frac{1}{2}}\left( k_{c}a\right) \\ S_{33}&=n(n+1)\left[ \left( n+2\right) I_{n+\frac{1}{2}}\left( k_{s}a\right) -k_{s}aI_{n-\frac{1}{2}}\left( k_{s}a\right) \right] \\ S_{34}&=n(n+1)\left[ \left( n+2\right) K_{n+\frac{1}{2}}\left( k_{s}a\right) +k_{s}aK_{n-\frac{1}{2}}\left( k_{s}a\right) \right] \\ S_{35}&=2K_{c}aJ_{n-\frac{1}{2}}\left( K_{c}a\right) -\left( n^2+3n+2-\frac{K_{s}^{2}a^2}{2}\right) J_{n+\frac{1}{2}}\left( K_{c}a\right) \\ S_{36}&=n(n+1)\left[ \left( n+2\right) J_{n+\frac{1}{2}}\left( K_{s}a\right) -K_{s}aJ_{n-\frac{1}{2}}\left( K_{s}a\right) \right] \\ S_{41}&=\left( n+2\right) J_{n+\frac{1}{2}}\left( k_{c}a\right) -k_{c}aJ_{n-\frac{1}{2}}\left( k_{c}a\right) \\ S_{42}&=\left( n+2\right) Y_{n+\frac{1}{2}}\left( k_{c}a\right) -k_{c}aY_{n-\frac{1}{2}}\left( k_{c}a\right) \\ S_{43}&=k_{s}aI_{n-\frac{1}{2}}\left( k_{s}a\right) -\left( n^2+2n+\frac{k_{s}^2a^2}{2}\right) I_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{44}&=-k_{s}aK_{n-\frac{1}{2}}\left( k_{s}a\right) -\left( n^2+2n+\frac{k_{s}^2a^2}{2}\right) K_{n+\frac{1}{2}}\left( k_{s}a\right) \\ S_{45}&=\left( n+2\right) J_{n+\frac{1}{2}}\left( K_{c}a\right) -K_{c}aJ_{n-\frac{1}{2}}\left( K_{c}a\right) \\ S_{46}&=K_{s}aJ_{n-\frac{1}{2}}\left( K_{s}a\right) -\left( n^2+2n-\frac{K_{s}^2a^2}{2}\right) J_{n+\frac{1}{2}}\left( K_{s}a\right) \\ S_{51}&=nJ_{n+\frac{1}{2}}\left( k_{c}b\right) -k_{c}bJ_{n+\frac{3}{2}}\left( k_{c}b\right) \\ S_{52}&=nY_{n+\frac{1}{2}}\left( k_{c}b\right) -k_{c}bY_{n+\frac{3}{2}}\left( k_{c}b\right) \\ S_{53}&=n(n+1)I_{n+\frac{1}{2}}\left( k_{s}b\right) \\ S_{54}&=n(n+1)K_{n+\frac{1}{2}}\left( k_{s}b\right) \\ S_{61}&=nJ_{n+\frac{1}{2}}\left( k_{c}b\right) \\ S_{62}&=nY_{n+\frac{1}{2}}\left( k_{c}b\right) \\ S_{63}&=k_{s}bI_{n-\frac{1}{2}}\left( k_{s}b\right) -nI_{n+\frac{1}{2}}\left( k_{s}b\right) \\ S_{64}&=-k_{s}bK_{n-\frac{1}{2}}\left( k_{s}b\right) -nK_{n+\frac{1}{2}}\left( k_{s}b\right) \end{aligned}$$

\(\bullet \) Material parameters used in this work were derived from [26, 40] :

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., El Baroudi, A. & Le Pommellec, J.Y. Analytical approach for predicting vibration characteristics of an embedded elastic sphere in complex fluid. Arch Appl Mech 90, 1399–1414 (2020). https://doi.org/10.1007/s00419-020-01674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01674-7

Keywords

Navigation