Skip to main content
Log in

Numerical analysis of the wrinkling behavior of thin membranes

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Membranes are widely applied in the large-span buildings and spatial deployable structures. They are prone to wrinkle under compression due to their small bending stiffness. The wrinkling deformation may affect the surface precision of a membrane structure and its static and dynamic behaviors. Research on the wrinkling behavior of a membrane and its variation with the wrinkle-influencing factors would shed light on the evolution of wrinkles and contribute significantly to the effective control over the wrinkling deformation. In this paper, a rectangular membrane under shear is numerically studied based on the stability theory of plates and shells to explore the wrinkle-influencing factors, such as boundary conditions, pre-stress, thickness and material constants, and their effects on the characteristic parameters of wrinkles. Besides, some of the results are also compared with those derived from the membrane element previously proposed by the authors for a further exploration. Some new and interesting findings are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. At the beginning, the authors did try the elastic model and a few hyper-elastic models in the analysis, but the numerical solutions obtained from them did not agree well with the experimental results in the literature.

  2. When the wrinkling model based on the stability theory of plates and shells is employed for a nonlinear buckling analysis, a much more refined mesh as shown in Fig. 2 is required to accurately characterize the detailed out-of-plane displacement of a membrane induced by wrinkling deformation. Such a refinement of the mesh, however, is not needed when the membrane element is used, because a coarser mesh is able to reflect with a satisfactory accuracy the influence of wrinkling deformation on the in-plane behavior of a membrane. It means that we can use much fewer membrane elements to discretize the membrane if its bending stiffness is not considered. Therefore, in the following analysis with the membrane element, the element size is 15 mm and about 520 three-node triangular elements are obtained after discretization.

References

  1. Arya, M., Lee, N., Pellegrino, S.: Crease-free biaxial packaging of thick membranes with slipping folds. Int. J. Solids Struct. 108, 24–39 (2017)

    Article  Google Scholar 

  2. Peng, F., Hu, Y.R., Ng, A.: Testing of membrane space structure shape control using genetic algorithm. J. Spacecr. Rockets 43(4), 788–793 (2006)

    Article  Google Scholar 

  3. Wang, C.G., Xie, J., Tan, H.F.: The modal analysis and modal behavior investigations on the wrinkled membrane inflated beam. Acta Astronaut. 81(2), 660–666 (2012)

    Article  Google Scholar 

  4. Roddeman, D.G., Drucker, J., Oomens, C.W.C.: The wrinkling of thin membranes: part I—theory. J. Appl. Mech. ASME 54, 884–887 (1987)

    Article  MATH  Google Scholar 

  5. Miyazaki, Y.: Wrinkle/slack model and finite element dynamics of membrane. Int. J. Numer. Methods Eng. 66, 1179–1209 (2006)

    Article  MATH  Google Scholar 

  6. Hornig, J., Schoop, H.: Closed form analysis of wrinkled membranes with linear stress–strain relation. Comput. Mech. 30, 259–264 (2003)

    Article  MATH  Google Scholar 

  7. Raible, T., Tegeler, K., Lohnert, S., Wriggers, P.: Development of a wrinkling algorithm for orthotropic membrane materials. Comput. Methods Appl. Mech. Eng. 194, 2550–2568 (2005)

    Article  MATH  Google Scholar 

  8. Ding, H.L., Yang, B.G.: The modeling and numerical analysis of wrinkled membranes. Int. J. Numer. Methods Eng. 58, 1785–1801 (2003)

    Article  MATH  Google Scholar 

  9. Akita, T., Nakashino, K., Natori, M.C., Park, K.C.: A simple computer implementation of membrane wrinkle behavior via a projection technique. Int. J. Numer. Methods Eng. 71, 1231–1259 (2007)

    Article  MATH  Google Scholar 

  10. Jarasjarungkiat, A., Wuchner, R., Bletzinger, K.U.: A wrinkling model based on material modification for isotropic and orthotropic membranes. Comput. Methods Appl. Mech. Eng. 197, 773–788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jarasjarungkiat, A., Wuchner, R., Bletzinger, K.U.: Efficient sub-grid scale modeling of membrane wrinkling by a projection method. Comput. Methods Appl. Mech. Eng. 198, 1097–1116 (2009)

    Article  MATH  Google Scholar 

  12. Yang, Q.S., Tan, F., Wang, X.F.: Loading and wrinkling analysis of membrane structures. Sci. China Technol. Sci. 54(10), 2597–2604 (2011)

    Article  MATH  Google Scholar 

  13. Wang, X.F., Yang, Q.S., Law, S.S.: Wrinkled membrane element based on the wrinkling potential. Int. J. Solids Struct. 51(21–22), 3532–3548 (2014)

    Article  Google Scholar 

  14. Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36, 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pipkin, A.C.: Relaxed energy densities for small deformations of membranes. IMA J. Appl. Math. 50, 225–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pipkin, A.C.: Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math. 52, 297–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Epstein, M., Forcinito, M.A.: Anisotropic membrane wrinkling: theory and analysis. Int. J. Solids Struct. 38, 5253–5272 (2001)

    Article  MATH  Google Scholar 

  18. Mosler, J., Cirak, F.: A variational formulation for finite deformation wrinkling analysis of inelastic membranes. Comput. Methods Appl. Mech. Eng. 198, 2087–2098 (2009)

    Article  MATH  Google Scholar 

  19. Taylor, M., Steigmann, D.J.: Simulation of laminated thermoelastic membranes. J. Therm. Stresses 32, 448–476 (2009)

    Article  Google Scholar 

  20. Atai, A., Steigmann, D.J.: Numerical analysis of wrinkled, anisotropic, nonlinearly elastic membranes. Mech. Res. Commun. 57, 1–5 (2014)

    Article  Google Scholar 

  21. Patil, A., Nordmark, A., Eriksson, A.: Wrinkling of cylindrical membranes with non-uniform thickness. Eur. J. Mech. A Solids 54, 1–10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwasa, T.: Approximate estimation of wrinkle wavelength and maximum amplitude using a tension-field solution. Int. J. Solids Struct. 121, 201–211 (2017)

    Article  Google Scholar 

  23. Miyamura, T.: Wrinkling on stretched circular membrane under in-plane torsion: bifurcation analyses and experiments. Eng. Struct. 23, 1407–1425 (2000)

    Article  Google Scholar 

  24. Wong, W., Pellegrino, S.: Wrinkled membranes. Part II: analytical models. J. Mech. Mater. Struct. 1(1), 25–59 (2006)

    Google Scholar 

  25. Wong, Y.W., Pellegrino, S.: Wrinkled membranes. Part III: numerical simulation. J. Mech. Mater. Struct. 1(1), 61–93 (2006)

    Google Scholar 

  26. Wong, W., Pellegrino, S.: Wrinkled membranes. Part I: experiments. J. Mech. Mater. Struct. 1(1), 2–23 (2006)

    Google Scholar 

  27. Lecieux, Y., Bouzidi, R.: Experimental analysis on membrane wrinkling under biaxial load—comparison with bifurcation analysis. Int. J. Solids Struct. 47(18–19), 2459–2475 (2010)

    Article  MATH  Google Scholar 

  28. Comana, C.D., Bassom, A.P.: On the nonlinear membrane approximation and edge-wrinkling. Int. J. Solids Struct. 82, 85–94 (2016)

    Article  Google Scholar 

  29. Wang, C.G., Du, Z.Y., Tan, H.F.: Initial wrinkling and its evolution of membrane inflated cone in bending. Thin Wall. Struct. 59, 97–102 (2012)

    Article  Google Scholar 

  30. Wang, C.G., Lan, L., Tan, H.F.: Secondary wrinkling analysis of rectangular membrane under shearing. Int. J. Mech. Sci. 75, 299–304 (2013)

    Article  Google Scholar 

  31. Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.A.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. USA 108(45), 18227–18232 (2011)

    Article  MATH  Google Scholar 

  32. Taylor, M., Davidovitch, B., Qiu, Z., Bertoldi, K.: A comparative analysis of numerical approaches to the mechanics of elastic sheets. J. Mech. Phys. Solids 79, 92–107 (2015)

    Article  MathSciNet  Google Scholar 

  33. Atai, A., Steigmann, D.J.: Modeling and simulation of sutured biomembranes. Mech. Res. Commun. 46, 34–40 (2012)

    Article  Google Scholar 

  34. Wang, C.G., Xie, J., Tan, H.F.: Vibration simulations of a wrinkled membrane-inflated arch. J. Aerosp. Eng. 27(2), 414–422 (2014)

    Article  Google Scholar 

  35. Huang, Q., Hu, H., Yu, K., Potier-Ferry, M., Belouettar, S., Damil, N.: Macroscopic simulation of membrane wrinkling for various loading cases. Int. J. Solids Struct. 64–65, 246–258 (2015)

    Article  Google Scholar 

  36. Senda, K., Petrovic, M., Nakanishi, K.: Wrinkle generation without bifurcation in a shear-enforced rectangular membrane with free boundaries. J. Spacecr. Rockets 52(4), 1057–1073 (2015a)

    Article  Google Scholar 

  37. Senda, K., Petrovic, M., Nakanishi, K.: Wrinkle generation in shear-enforced rectangular membrane. Acta Astronaut. 111, 110–135 (2015b)

    Article  Google Scholar 

  38. Li Y.L.: Study on wrinkling and dynamic characteristics of space membrane. Doctoral dissertation. Harbin Institute of Technology, Harbin (2008) (in Chinese)

  39. Deng, X., Pellegrino, S.: Wrinkling of orthotropic viscoelastic membranes. AIAA J. 50(3), 668–681 (2012)

    Article  Google Scholar 

  40. Hong, Y., Yao, W., Xu, Y.: Numerical and experimental investigation of wrinkling pattern for aerospace laminated membrane structures. Int. J. Aerosp. Eng. 8476041 (2017)

  41. Wang, X.F., Law, S.S., Yang, Q.S., Yang, N.: Numerical study on the dynamic properties of wrinkled membranes. Int. J. Solids Struct. 143, 125–143 (2018)

    Article  Google Scholar 

  42. Wang, X.F., Yang, Q.S., Law, S.S.: Wrinkled membrane element based on the wrinkling potential. Int. J. Solids Struct. 51, 3532–3548 (2014)

    Article  Google Scholar 

  43. Huang, K.Z., Xue, M.D., Lu, M.W.: Tensor Analysis, 2nd edn. Tsinghua University Press, Beijing (2003). (in Chinese)

    Google Scholar 

  44. Rossi, R., Lazzari, M., Vitaliani, R., Oñate, E.: Simulation of light-weight membrane structures by wrinkling model. Int. J. Numer. Methods Eng. 62, 2127–2153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pimprikar, N.A., Banerjee, B., Roy, D., Vasu, R.M., Reid, S.R.: New computational approaches for wrinkled and slack membranes. Int. J. Solids Struct. 47(18–19), 2476–2486 (2010)

    Article  MATH  Google Scholar 

  46. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley, Chichester (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The research in this paper is supported by the general project (51778041, 51278049) from National Natural Science Foundation of China. Herein, the supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1. Wrinkling model based on the stability of plates and shells

The wrinkling model based on the stability of plates and shells regards the wrinkling deformation of a membrane as a kind of local buckling of a thin plate or shell with very small bending stiffness and obtains its out-of-plane deformation through the nonlinear buckling analysis.

An arbitrary point P on the mid-surface of an undeformed thin shell (its configuration is denoted by \(\Omega _{0})\) can be determined by the position vector \({\overline{{{\varvec{R}}}}}\) as:

$$\begin{aligned} {\overline{{{\varvec{R}}}}}(\xi ^{1},\xi ^{2})=\xi ^{\alpha }{\overline{{{\varvec{G}}}}}_\alpha \end{aligned}$$
(A-1)

where the Greek alphabet \(\alpha = 1,2\); \({\overline{{{\varvec{G}}}}}_\alpha \) and \(\xi ^{\alpha }\) are, respectively, the covariant base vector and the contravariant coordinate on the mid-surface of the shell with \({\overline{{{\varvec{G}}}}}_\alpha ={\partial {\overline{{{\varvec{R}}}}}}/{\partial \xi ^{\alpha }}\); According to the Einstein’s summation convention, repetition of the index \(\alpha \) represents the summation over its range, i.e., \(\xi ^{\alpha }{\overline{{{\varvec{G}}}}}_\alpha =\sum _{\alpha =1}^2 {\xi ^{\alpha }{\overline{{{\varvec{G}}}}}_\alpha } \). The unit vector \({\overline{{{\varvec{N}}}}}\) of the normal on this point can be represented by the base vectors as:

$$\begin{aligned} {\overline{{{\varvec{N}}}}}=\frac{{\overline{{{\varvec{G}}}}}_1 \times {\overline{{{\varvec{G}}}}}_2 }{\left| {{\overline{{{\varvec{G}}}}}_1 \times {\overline{{{\varvec{G}}}}}_2 } \right| }=\frac{e^{\alpha \beta }e_{ijk} \overline{{R}}_{,\alpha }^j \overline{{R}}_{,\beta }^k {{\varvec{e}}}_i }{2\sqrt{\overline{{G}}}} \end{aligned}$$
(A-2)

where \(\overline{{G}}=\det (\overline{{G}}_{\alpha \beta } )\) and \(\overline{{G}}_{\alpha \beta } \) are the component of the metric tensor in the initial configuration \(\Omega _{0}\) with \(\overline{{G}}_{\alpha \beta } ={\overline{{{\varvec{G}}}}}_\alpha \cdot {\overline{{\varvec{G}}}}_\beta \) (\(\alpha \),\(\beta = 1,2\)); \(e^{\alpha \beta }\) and \(e_{ijk}\) (i, j, \(k = 1,2,3\)) are the second and third permutation symbols, respectively; \((\;)_{,\alpha } ={\partial (\;)}/{\partial \xi ^{\alpha }}\); \({{\varvec{e}}}_{i}\) and \(\overline{{R}}_{,\alpha }^j \) are, respectively, the base vector and the jth component of the vector \({\overline{{{\varvec{R}}}}}_{,\alpha } \) in the Cartesian coordinate system. A point P’ is located at a distance of \(\zeta \) from point P along the normal \({\overline{{{\varvec{N}}}}}\) and its position vector can be formulated as:

$$\begin{aligned} {{\varvec{R}}}={\overline{{{\varvec{R}}}}}(\xi ^{1},\xi ^{2})+\zeta {\overline{{{\varvec{N}}}}} \end{aligned}$$
(A-3)

The corresponding curvilinear coordinate frame in the configuration \(\Omega _{0}\) can then be derived from Eq. (A-3):

$$\begin{aligned} {{\varvec{G}}}_\alpha =\frac{\partial {{\varvec{R}}}}{\partial \xi ^{\alpha }}=\frac{\partial {\overline{{{\varvec{R}}}}}}{\partial \xi ^{\alpha }}+\zeta \frac{\partial {\overline{{{\varvec{N}}}}}}{\partial \xi ^{\alpha }},\quad {{\varvec{N}}}={\overline{{{\varvec{N}}}}} \end{aligned}$$
(A-4)

According to the Weingarten’s equation in Differential Geometry [43], we obtain:

$$\begin{aligned} \frac{\partial {\overline{{{\varvec{N}}}}}}{\partial \xi ^{\alpha }}=\hbox {-}{K}_\alpha ^{\cdot \beta } {\overline{{{\varvec{G}}}}}_\beta =\hbox {-}{K}_{\alpha \beta } (\overline{{G}}_{\beta \gamma } )^{-1}{\overline{{{\varvec{G}}}}}_\gamma \end{aligned}$$
(A-5)

where \({K}_{\alpha \beta } \) is the coefficient of the second fundamental form of the undeformed surface with \({K}_{\alpha \beta } =\frac{\partial ^{2}{\overline{{{\varvec{R}}}}}}{\partial \xi ^{\alpha }\partial \xi ^{\beta }}\cdot {\overline{{{\varvec{N}}}}}\). Thus, Eq. (A-4)\(_{1}\) can then be rewritten as:

$$\begin{aligned} {{\varvec{G}}}_\alpha =\frac{\partial {{\varvec{R}}}}{\partial \xi ^{\alpha }}={\overline{{{\varvec{G}}}}}_\alpha \hbox {-}\zeta \,{K}_{\alpha \beta } (\overline{{G}}_{\beta \gamma } )^{-1}{\overline{{{\varvec{G}}}}}_\gamma \end{aligned}$$
(A-6)

When the shell buckles under compression (its corresponding configuration is denoted by \(\Omega \)), the position of point P changes and it can be determined by:

$$\begin{aligned} {\overline{{{\varvec{r}}}}}(\xi ^{1},\xi ^{2})=\xi ^{\alpha }{\overline{{{\varvec{g}}}}}_\alpha \end{aligned}$$
(A-7)

where \({\overline{{{\varvec{r}}}}}\) and \({\overline{{{\varvec{g}}}}}_\alpha \) are, respectively, the position vector and the covariant base vector in the current configuration \(\Omega \) with \({\overline{{{\varvec{g}}}}}_\alpha ={\partial {\overline{{{\varvec{r}}}}}}/{\partial \xi ^{\alpha }}\). The normal direction at point P also varies with the deformation and it is given by Eq. (A-8):

$$\begin{aligned} {\overline{{\varvec{n}}}}=\frac{{\overline{{\varvec{g}}}}_1 \times {\overline{{\varvec{g}}}}_2 }{\left| {{\overline{{\varvec{g}}}}_1 \times {\overline{{\varvec{g}}}}_2 } \right| }=\frac{e^{\alpha \beta }e_{ijk} \overline{{r}}_{,\alpha }^j \overline{{r}}_{,\beta }^k {{\varvec{e}}}_i }{2\sqrt{\overline{{g}}}} \end{aligned}$$
(A-8)

where \(\overline{{g}}=\det (\overline{{g}}_{\alpha \beta } )\) and \(\overline{{g}}_{\alpha \beta } \) are the component of the metric tensor in the current configuration \(\Omega \) with \(\overline{{g}}_{\alpha \beta } ={\overline{{\varvec{g}}}}_\alpha \cdot {\overline{{\varvec{g}}}}_\beta \); \(\overline{{r}}_{,\alpha }^j \) is the jth component of the vector \({\overline{{\varvec{r}}}}_{,\alpha } \) in the Cartesian coordinate system. The position of point P’ in the configuration \(\Omega \) can then be obtained from Eqs. (A-7) and (A-8):

$$\begin{aligned} {{\varvec{r}}}={\overline{{\varvec{r}}}}(\xi ^{1},\xi ^{2})+\zeta {\overline{{\varvec{n}}}} \end{aligned}$$
(A-9)

According to the Weingarten’s equation in Differential Geometry [43], the curvilinear coordinate frame in the configuration \(\Omega \) can be formulated as:

$$\begin{aligned} {{\varvec{g}}}_\alpha =\frac{\partial {{\varvec{r}}}}{\partial \xi ^{\alpha }}=\frac{\partial {\overline{{\varvec{r}}}}}{\partial \xi ^{\alpha }}+\zeta \frac{\partial {\overline{{\varvec{n}}}}}{\partial \xi ^{\alpha }}={\overline{{\varvec{g}}}}_\alpha \hbox {-}\zeta \,\kappa _\alpha ^{\cdot \beta } {\overline{{\varvec{g}}}}_\beta ={\overline{{\varvec{g}}}}_\alpha \hbox {-}\zeta \,\kappa _{\alpha \beta } (\overline{{g}}_{\beta \gamma } )^{-1}{\overline{{\varvec{g}}}}_\gamma ,\quad {{\varvec{n}}}={\overline{{\varvec{n}}}} \end{aligned}$$
(A-10)

where \(\kappa _{\alpha \beta } \) is the coefficient of the second fundamental form of the deformed surface with \(\kappa _{\alpha \beta } =\frac{\partial ^{2}{\overline{{\varvec{r}}}}}{\partial \xi ^{\alpha }\partial \xi ^{\beta }}\cdot {\overline{{\varvec{n}}}}\). The deformation gradient at point P’ can be derived from Eqs. (A-4) and (A-10):

$$\begin{aligned} {{\varvec{F}}}=\frac{\partial {{\varvec{r}}}}{\partial {{\varvec{R}}}}={{\varvec{g}}}_I {{\varvec{G}}}^{I} \end{aligned}$$
(A-11)

where \({{\varvec{G}}}^{I}\) is the contravariant base vector in the configuration \(\Omega _{0}\) with \({{\varvec{G}}}_I \cdot {{\varvec{G}}}^{J}=\delta _I^J \) (I, \(J = 1, 2, 3; \delta _I^J \) is the Kronecker symbol); \({{\varvec{G}}}^{3} ={{\varvec{N}}}\) and \({{\varvec{g}}}_{3} ={{\varvec{n}}}\). The Green strain tensor can then be expressed as:

$$\begin{aligned} {{\varvec{E}}}=\frac{1}{2}\left( {{{\varvec{F}}}^{\mathrm {T}}{{\varvec{F}}}-{{\varvec{I}}}} \right) =\frac{1}{2}\left( {g_{IJ} -G_{IJ} } \right) {{\varvec{G}}}^{I}{{\varvec{G}}}^{J} \end{aligned}$$
(A-12)

where \(G_{IJ} ={{\varvec{G}}}_I \cdot {{\varvec{G}}}_J \) and \(g_{IJ} ={{\varvec{g}}}_I \cdot {{\varvec{g}}}_J \). The second Piola–Kirchhoff (PK2) stress tensor is energetically conjugate to the Green strain and is given by the constitutive relationship:

$$\begin{aligned} {{\varvec{S}}}={{\varvec{C}}}:{{\varvec{E}}} \end{aligned}$$
(A-13)

where C is the constitutive tensor.

When the body force vanishes, the equilibrium differential equations in the configuration \(\Omega \) are simplified as:

$$\begin{aligned} \nabla \cdot {\varvec{\sigma }}=0 \end{aligned}$$
(A-14)

where \(\nabla =\frac{\partial }{\partial \eta ^{I}}{{\varvec{t}}}_I (I = 1, 2, 3); {{\varvec{t}}}_1 \) and \({{\varvec{t}}}_2 \) are the normalized base vectors along the principal directions in the configuration \(\Omega \) and \({{\varvec{t}}}_3 ={{\varvec{n}}}\); \(\eta ^{1}\) and \(\eta ^{2}\) are the principal coordinates and \(\eta ^{3}=\zeta \); \({\varvec{\sigma }}\) is the Cauchy stress tensor and can be obtained by pushing forward S:

$$\begin{aligned} {\varvec{\sigma }}=J^{-1}{{\varvec{F}}}\cdot {{\varvec{S}}}\cdot {{\varvec{F}}}^{{\mathrm{T}}} \end{aligned}$$
(A-15)

where \(J =\hbox { det}({{\varvec{F}}})\). Pulling back Eq. (A-14) to the initial configuration yields:

$$\begin{aligned} \nabla _0 \cdot {{\varvec{P}}}=0 \end{aligned}$$
(A-16)

where \(\nabla _0 =\frac{\partial }{\partial \eta ^{I}}{{\varvec{T}}}_I (I\) = 1, 2, 3), \({{\varvec{T}}}_1 \) and \({{\varvec{T}}}_2 \) are the normalized base vectors along the principal directions in the configuration \(\Omega _{0}\) and \({{\varvec{T}}}_3 ={{\varvec{N}}}\); P is the Lagrange stress tensor with:

$$\begin{aligned} {{\varvec{P}}}=J{{{\varvec{F}}}}^{-1}\cdot {\varvec{\sigma }}={{\varvec{S}}}\cdot {{\varvec{F}}}^{{\mathrm{T}}} \end{aligned}$$
(A-17)

Owing to the complexity of the boundary conditions for a general wrinkling problem, Eq. (A-14) or Eq. (A-16) is usually solved with the finite element method (FEM). But the stiffness matrix of a wrinkled membrane may have a large condition number resulting from the vanishing stiffness in the normal direction of wrinkles and it may thus be difficult to obtain the convergent solution if the Newton iteration scheme is used. The dynamic relaxation method combined with the explicit time integration scheme does not require the inverse operation of the stiffness matrix and ensures the numerical stability. This approach is therefore adopted in this paper to analyze the wrinkling behavior of a membrane based on the stability of plates and shells.

1.2 A.2 Dynamic relaxation method

The dynamic relaxation method (DRM) treats the static equilibrium of a wrinkled membrane as the long-time limit state of a damped transient system and obtains the wrinkling deformation by solving for this limit state [19,20,21, 32, 44, 45]. DRM combined with the explicit time integration scheme intends to address such a nonlinear problem that usually induces divergence in the Newton iteration. When DRM is used for the wrinkling problem, mass and damping in the dynamic equations are not required to match the real physical properties of a membrane. Their values are chosen only for the consideration of the speedy decay of the transient response, the efficient convergence and the stability of computation [32].

According to the assumption of DRM, the pseudo dynamic process of the wrinkling problem can be formulated as:

$$\begin{aligned} \nabla _0 \cdot {{\varvec{P}}}=\rho {{\varvec{r}}}_{tt} +c{{\varvec{r}}}_t \end{aligned}$$
(A-18)

where \((\;)_{tt} ={\hbox {d}^{2}(\;)}/{\hbox {d}t^{2}}\), \({{\varvec{r}}}_t ={\hbox {d}(\;)}/{\hbox {d}t}\), \(\rho \) and c are, respectively, the density and damping of membrane. Equation (A-18) is solved in this paper with the central difference method [46], a kind of explicit time integration scheme, to overcome the convergence difficulty that confronts us in the wrinkling analysis with an ill-conditioned stiffness matrix. The detailed procedure of the central difference method is presented as follows:

  1. (1)

    Discretize the time domain (i.e., \([0, t_E ]\), \( t_E \) is the ending time) of Eq. (A-18) into “n” intervals \([t^{k-1},\;t^{k}](k\) = 1\(\sim n)\) with:

    $$\begin{aligned} \Delta t^{k+1/2}=t^{k+1}-t^{k},\quad t^{k+1/2}=\frac{1}{2}\left( {t^{k+1}+t^{k}} \right) ,\quad \Delta t^{k}=t^{k+1/2}-t^{k-1/2} \end{aligned}$$
    (A-19)
  2. (2)

    Set the initial values including the displacement \({{\varvec{u}}}^{0}\) and velocity \({{\varvec{u}}}_t^0 \) at the moment of \(t = 0\), the mass matrix M and the damping matrix \({{\varvec{C}}}^{\mathrm{damp}}\).

  3. (3)

    Compute the force \({{\varvec{f}}}^{k}\). \({{\varvec{f}}}^{k}={{\varvec{f}}}^{\mathrm {ext}}({{\varvec{u}}}^{k},t^{k})-{{\varvec{f}}}^{\mathrm{int}}({{\varvec{u}}}^{k},t^{k})\) in which \({{\varvec{f}}}^{\mathrm {ext}},{{\varvec{f}}}^{\mathrm{int}}\) are the exterior and interior nodal force vectors.

  4. (4)

    Compute the acceleration \({{\varvec{u}}}_{tt}^k \):

    $$\begin{aligned} {{\varvec{u}}}_{tt}^k ={{\varvec{M}}}^{-1}\left( {{{\varvec{f}}}^{k}-{{\varvec{C}}}^{\mathrm {damp}}{{\varvec{u}}}_t^{k-1/2} } \right) \end{aligned}$$
    (A-20)

    When k = 0, \({{\varvec{u}}}_t^{-1/2} \) is determined by:

    $$\begin{aligned} {{\varvec{u}}}_t^{-1/2} =\left( {{{\varvec{I}}}-(\Delta t^{0}/2){{\varvec{M}}}^{-1}{{\varvec{C}}}^{\mathrm {damp}}} \right) ^{-1}\left( {{{\varvec{u}}}_t^0 -(\Delta t^{0}/2){{\varvec{M}}}^{-1}{{\varvec{f}}}^{0}} \right) \end{aligned}$$
    (A-21)

    in which I is the unit matrix \(\circ \)

  5. (5)

    Update the time: \(t^{k+1}=t^{k}+\Delta t^{k+1/2},\quad t^{k+1/2}=\frac{1}{2}\left( {t^{k+1}+t^{k}} \right) \)

  6. (6)

    Update the velocity \({{\varvec{u}}}_t^{k+1/2} \):

    $$\begin{aligned} {{\varvec{u}}}_t^{k+1/2} ={{\varvec{u}}}_t^k +(t^{k+1/2}-t^{k}){{\varvec{u}}}_{tt}^k \end{aligned}$$
    (A-22)
  7. (7)

    Update the displacement \({{\varvec{u}}}^{k+1}\):

    $$\begin{aligned} {{\varvec{u}}}^{k+1}={{\varvec{u}}}^{k}+\Delta t^{k+1/2}{{\varvec{u}}}_t^{k+1/2} \end{aligned}$$
    (A-23)
  8. (8)

    Calculate \({{\varvec{f}}}^{k+1}\).

  9. (9)

    Determine \({{\varvec{u}}}_{tt}^{k+1} \) by Eq. (A-20).

  10. (10)

    Update the velocity \({{\varvec{u}}}_t^{k+1} \):

    $$\begin{aligned} {{\varvec{u}}}_t^{k+1} ={{\varvec{u}}}_t^{k+1/2} +(t^{k+1}-t^{k+1/2}){{\varvec{u}}}_{tt}^{k+1} \end{aligned}$$
    (A-24)
  11. (11)

    Check the energy balance.

  12. (12)

    Update the time step: \(k\rightarrow k+1\) and return to step (5) till the solution is completed.

It should be noted that the explicit time integration scheme is conditionally stable, and it can obtain the convergent solution only when \(\Delta t\le \Delta t_{cr} \). \(\Delta t_{cr} \) is the critical time increment (also called the stable time increment), and it can be determined by [44]:

$$\begin{aligned} \Delta t_{{\mathrm{cr}}} =\frac{2}{\lambda _{\max } } \end{aligned}$$
(A-25)

where \(\lambda _{max}\) is the maximum eigenvalue of the system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yin, L. & Yang, Q. Numerical analysis of the wrinkling behavior of thin membranes. Arch Appl Mech 89, 2361–2380 (2019). https://doi.org/10.1007/s00419-019-01583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01583-4

Keywords

Navigation