Skip to main content
Log in

Analytical approximate solutions for asymmetric conservative oscillators

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper focuses on the construction of analytical approximate solutions for an asymmetric conservative single-degree-of-freedom oscillator. First, based on the asymmetric oscillator, two symmetric ones are introduced; then, the second-order Newton iteration method and the harmonic balance method are applied to the two oscillators, respectively; finally, the analytical approximate solutions of the asymmetric oscillator are constructed and expressed by the oscillation amplitudes. Each iterative step needs the Fourier series representations of the restoring force functions and their first and second derivatives, of the two symmetric oscillators. Using only one iterative step can obtain accurate analytical approximate solution valid for a large range of oscillation amplitudes. Two examples are presented to illustrate use and high accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Hagedorn, P.: Nonlinear Oscillations. Clarendon, Oxford (1988)

    MATH  Google Scholar 

  3. Mickens, R.E.: Oscillations in Planar Dynamic Systems. World Scientific, Singapore (1996)

    Book  Google Scholar 

  4. Cveticanin, L.: Strong Nonlinear Oscillators—Analytical Solutions, 2nd edn. Springer, Cham (2018)

    Book  Google Scholar 

  5. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  Google Scholar 

  6. Mickens, R.E.: Comments on the method of harmonic-balance. J. Sound Vib. 94(3), 456–460 (1984)

    Article  MathSciNet  Google Scholar 

  7. Yuste, S.B.: Comments on the method of harmonic-balance in which Jacobi elliptic functions are used. J. Sound Vib. 145(3), 381–390 (1991)

    Article  MathSciNet  Google Scholar 

  8. Rao, A., Rao, B.: Some remarks on the harmonic balance method for mixed-parity non-linear oscillations. J. Sound Vib. 170(4), 571–576 (1994)

    Article  MathSciNet  Google Scholar 

  9. Lau, S., Cheung, Y.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48(4), 959–964 (1981)

    Article  Google Scholar 

  10. Wu, B.S., Li, P.S.: A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36(2), 167–176 (2001)

    Article  Google Scholar 

  11. Wu, B.S., Sun, W.P., Lim, C.W.: An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Non-Linear Mech. 41(6–7), 766–774 (2006)

    Article  MathSciNet  Google Scholar 

  12. Sun, W.P., Wu, B.S., Lim, C.W.: Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire. J. Sound Vib. 300(3–5), 1042–1047 (2007)

    Article  Google Scholar 

  13. Beléndez, A., Gimeno, E., Alvarez, M.L., Mendez, D.I.: Nonlinear oscillator with discontinuity by generalized harmonic balance method. Comput. Math. Appl. 58(11–12), 2117–2123 (2009)

    Article  MathSciNet  Google Scholar 

  14. Beléndez, A., Fernández, E., Rodes, J., Fuentes, R., Pascual, I.: Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring. Phys. Lett. A 373(7), 735–740 (2009)

    Article  Google Scholar 

  15. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320(4–5), 1064–1077 (2009)

    Article  Google Scholar 

  16. Mohammadian, M., Akbarzade, M.: Higher-order approximate analytical solutions to nonlinear oscillatory systems arising in engineering problems. Arch. Appl. Mech. 87(8), 1317–1332 (2017)

    Article  Google Scholar 

  17. Wu, B.S., Liu, W.J., Chen, X., Lim, C.W.: Asymptotic analysis and accurate approximate solutions for strongly nonlinear conservative symmetric oscillators. Appl. Math. Model. 49, 243–254 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lai, S.K., Lim, C.W., Xiang, Y., Zhang, W.: On asymptotic analysis for large amplitude nonlinear free vibration of simply supported laminated plates. J. Vib. Acoust. 131(5), 051010 (2009)

    Article  Google Scholar 

  19. Sun, W.P., Lim, C.W., Wu, B.S., Wang, C.: Analytical approximate solutions to oscillation of a current-carrying wire in a magnetic field. Nonlinear Anal. Real World Appl. 10(3), 1882–1890 (2009)

    Article  MathSciNet  Google Scholar 

  20. Fallah, A., Aghdam, M.M.: Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. J. Mech. A Solid 30(4), 571–583 (2011)

    Article  Google Scholar 

  21. Joglekar, M.M., Pawaskar, D.N.: Estimation of oscillation period/switching time for electrostatically actuated microbeam type switches. Int. J. Mech. Sci. 53(2), 116–125 (2011)

    Article  Google Scholar 

  22. Lai, S.K., Harrington, J., Xiang, Y., Chow, K.W.: Accurate analytical perturbation approach for large amplitude vibration of functionally graded beams. Int. J. Non-Linear Mech. 47(5), 473–480 (2012)

    Article  Google Scholar 

  23. Belardinelli, P., Lenci, S., Demeio, L.: A comparison of different semi-analytical techniques to determine the nonlinear oscillations of a slender microbeam. Meccanica 49(8), 1821–1831 (2014)

    Article  MathSciNet  Google Scholar 

  24. Dai, H.L., Wang, L.: Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn. 82(4), 1709–1719 (2015)

    Article  Google Scholar 

  25. Cveticanin, L., Zukovic, M., Mester, Gy, Biro, I., Sarosi, J.: Oscillators with symmetric and asymmetric quadratic nonlinearity. Acta Mech. 227(6), 1727–1742 (2016)

    Article  MathSciNet  Google Scholar 

  26. Sun, W.P., Wu, B.S.: Accurate analytical approximate solutions to general strong nonlinear oscillators. Nonlinear Dyn. 51(1–2), 277–287 (2008)

    MATH  Google Scholar 

  27. Wu, B.S., Lim, C.W.: Large amplitude non-linear oscillations of a general conservative system. Int. J. Non-Linear Mech. 39(5), 859–870 (2004)

    Article  MathSciNet  Google Scholar 

  28. Yamgoue, S.B.: On the harmonic balance with linearization for asymmetric single degree of freedom non-linear oscillators. Nonlinear Dyn. 69(3), 1051–1062 (2012)

    Article  MathSciNet  Google Scholar 

  29. Liu, W.J., Wu, B.S., Lim, C.W.: Linear and nonlinear free vibrations of electrostatically actuated micro-/nanomechanical resonators. Microsyst. Technol. 23(1), 113–123 (2017)

    Article  Google Scholar 

  30. Tang, D.F., Lim, C.W., Hong, L., Jiang, J., Lai, S.K.: Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dyn. 88(3), 2255–2264 (2017)

    Article  Google Scholar 

  31. Mengali, G., Quarta, A.A., Aliasi, G.: A graphical approach to electric sail mission design with radial thrust. Acta Astronaut. 82(2), 197–208 (2013)

    Article  Google Scholar 

  32. Quarta, A.A., Mengali, G.: Analysis of electric sail heliocentric motion under radial thrust. J. Guid. Control Dyn. 39(6), 1–5 (2015)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 11672118) and the Department of Education of Guangdong Province of China (Grant No. 2017KQNCX059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisheng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytical approximate solutions to strongly nonlinear conservative symmetric oscillators

Consider the nonlinear oscillator

$$\begin{aligned} \frac{\hbox {d}^{2}y}{\hbox {d}t^{2}}+n\left( y \right) =0,\hbox { y}\left( 0 \right) =B,\hbox { }\frac{\hbox {d}y}{\hbox {d}t}\left( 0 \right) =0 \end{aligned}$$
(A1)

where \(n\left( y \right) \) satisfies \(n\left( {-y} \right) =-n\left( y \right) \) and \(yn\left( y \right) >0\) for \(y\in [-B,B],\hbox { y}\ne 0 \). Three analytical approximate solutions to Eq. (A1) by using the second-order Newton iteration approach and the HB method [17] are shown as follows. The first approximate period and periodic solution are

$$\begin{aligned} T_1 \left( B \right) ={2\pi }/{\sqrt{\Omega _1 \left( B \right) }} \end{aligned}$$
(A2)

and

$$\begin{aligned} y_1 \left( t \right) =B\cos \left[ {\sqrt{\Omega _1 \left( B \right) }\hbox { }t} \right] , \end{aligned}$$
(A3)

respectively, where

$$\begin{aligned} \Omega _1 \left( B \right) ={\lambda _1 \left( B \right) }/B \end{aligned}$$
(A4)

in which

$$\begin{aligned} \lambda _1 \left( B \right) =\frac{4}{\pi }\int _0^{\pi /2} {n\left( {B\cos \tau } \right) } \cos \tau \hbox {d}\tau \end{aligned}$$
(A5)

The second approximate period and periodic solution are

$$\begin{aligned} T_2 \left( B \right) ={2\pi }/{\sqrt{\Omega _2 \left( B \right) }} \end{aligned}$$
(A6)

and

$$\begin{aligned} y_2 \left( t \right) =\left[ {B+c_1 \left( B \right) } \right] \cos \left[ {\sqrt{\Omega _2 \left( B \right) }t} \right] -c_1 \left( B \right) \cos \left[ {3\sqrt{\Omega _2 \left( B \right) }t} \right] , \end{aligned}$$
(A7)

respectively, where

$$\begin{aligned} \Omega _2 \left( B \right) =\frac{\lambda _1 }{B}-\frac{\lambda _3 \left[ {\left( {\mu _0 -\mu _4 } \right) B-2\lambda _1 } \right] }{B\left[ {\left( {\mu _2 +\mu _4 -\mu _0 -\mu _6 } \right) B+18\lambda _1 } \right] }, \quad c_1 (B)=-\frac{2\lambda _3 B}{\left( {\mu _2 +\mu _4 -\mu _0 -\mu _6 } \right) B+18\lambda _1 }\nonumber \\ \end{aligned}$$
(A8)

in which

$$\begin{aligned}&\lambda _3 \left( B \right) =\frac{4}{\pi }\int _0^{\pi /2} {n\left( {B\cos \tau } \right) } \cos 3\tau \hbox {d}\tau ,\nonumber \\&\mu _{2(n-1)} \left( B \right) =\frac{4}{\pi }\int _0^{\pi /2} {n_y \left( {B\cos \tau } \right) } \cos [2(n-1)\tau ]\hbox {d}\tau ,\hbox { }n=1,\hbox { }2,\hbox { }\ldots \end{aligned}$$
(A9)

The third approximate period and periodic solution are

$$\begin{aligned} T_3 \left( B \right) ={2\pi }/{\sqrt{\Omega _3 \left( B \right) }} \end{aligned}$$
(A10)

and

$$\begin{aligned} y_3 \left( t \right)= & {} \left[ {B+d_1 \left( B \right) } \right] \cos \left[ {\sqrt{\Omega _3 \left( B \right) }t} \right] +\left[ {-d_1 \left( B \right) +d_2 \left( B \right) } \right] \cos \left[ {3\sqrt{\Omega _3 \left( B \right) }t} \right] \nonumber \\&-d_2 \left( B \right) \cos \left[ {5\sqrt{\Omega _3 \left( B \right) }t} \right] , \end{aligned}$$
(A11)

respectively, where

$$\begin{aligned} \Omega _3 \left( B \right)= & {} \frac{\lambda _1 }{B}+\frac{\lambda _3 \left( {Q_3 P_1 -Q_1 P_3 } \right) +\lambda _5 \left( {Q_1 P_2 -Q_2 P_1 } \right) }{B\left( {Q_2 P_3 -Q_3 P_2 } \right) },\hbox { }d_1 \left( B \right) =\frac{-P_3 \lambda _3 +P_2 \lambda _5 }{Q_2 P_3 -Q_3 P_2 },\nonumber \\ d_2 \left( B \right)= & {} \frac{Q_3 \lambda _3 -Q_2 \lambda _5 }{Q_2 P_3 -Q_3 P_2 } \end{aligned}$$
(A12)

in which

$$\begin{aligned} P_1 \left( B \right)= & {} \frac{1}{8}\left[ {4\mu _2 -4\mu _6 +c_1 \left( {2\nu _3 -2\nu _5 -\nu _7 +\nu _9 } \right) } \right] ,\nonumber \\ Q_1 \left( B \right)= & {} \frac{1}{8}\left[ {-8\Omega _2 +4\mu _0 -4\mu _4 +c_1 \left( {3\nu _1 -3\nu _3 -\nu _5 +\nu _7 } \right) } \right] ,\nonumber \\ P_2 \left( B \right)= & {} \frac{1}{8}\left[ {-72\Omega _2 +4\mu _0 -4\mu _2 +4\mu _6 -4\mu _8 +c_1 \left( {2\nu _1 -4\nu _3 +3\nu _5 -2\nu _9 +\nu _{11} } \right) } \right] ,\nonumber \\ Q_2 \left( B \right)= & {} \frac{1}{8}\left[ {72\Omega _2 -4\mu _0 +4\mu _2 +4\mu _4 -4\mu _6 +c_1 \left( {-3\nu _1 +5\nu _3 -\nu _5 -2\nu _7 +\nu _9 } \right) } \right] ,\nonumber \\ P_3 \left( B \right)= & {} \frac{1}{8}\left[ {200\Omega _2 -4\mu _0 +4\mu _2 +4\mu _8 -4\mu _{10} +c_1 \left( {-2\nu _1 +3\nu _3 -2\nu _5 +2\nu _7 -2\nu _{11} +\nu _{13} } \right) } \right] ,\nonumber \\ Q_3 \left( B \right)= & {} \frac{1}{8}\left[ {-4\mu _2 +4\mu _4 +4\mu _6 -4\mu _8 -c_1 \left( {\nu _1 +\nu _3 -4\nu _5 +\nu _7 +2\nu _9 -\nu _{11} } \right) } \right] ,\nonumber \\ \lambda _5 \left( B \right)= & {} \frac{4}{\pi }\int _0^{\pi /2} {n\left( {A\cos \tau } \right) } \cos 5\tau \hbox {d}\tau ,\nonumber \\ \nu _{2n-1} \left( B \right)= & {} \frac{4}{\pi }\int _0^{\pi /2} {n_{yy} \left( {B\cos \tau } \right) } \cos [(2n-1)\tau ]\hbox {d}\tau ,\hbox { }n=1,\hbox { }2,\hbox { }\ldots \end{aligned}$$
(A13)

In Eqs. (A9) and (A13), the subscript y indicates the derivative of n(y) with respect to y. It is obvious that the coefficients \(\lambda _{2n-1} \left( B \right) ,\hbox { }\mu _{2(n-1)} \left( B \right) ,\hbox { }\nu _{2n-1} \left( B \right) \hbox { }\left( n=1,\hbox { }2,\hbox { }\ldots \right) \) should be calculated to obtain the approximate solutions above.

Appendix B

The coefficients \(d_1^i \), \(d_2^i \), \(E_1^i \) and \(D_1^i \) in Eq. (13) are given by

$$\begin{aligned} d_1^i= & {} \frac{2310\left( {-1} \right) ^{i}A_i ^{2}\left[ {55\left( {-1} \right) ^{i-1}A_i +21\pi } \right] \left[ {46438822A_i ^{2}+35691045\left( {-1} \right) ^{i-1}A_i \pi +6756750\pi ^{2}} \right] }{D_1^i },\\ d_2^i= & {} \frac{6435(-1)^{i-1}A_i ^{2}\left[ {55(-1)^{i-1}A_i +21\pi } \right] \left[ {426834A_i ^{2}+484330(-1)^{i-1}A_i \pi +121275\pi ^{2}} \right] }{D_1^i }\\ E_1^i= & {} 12966921466026784(-1)^{i-1}A_i ^{5}+25114501127000964A_i ^{4}\pi +19374272110822860(-1)^{i-1}A_i ^{3}\pi ^{2} \\&+7441413396832800A_i ^{2}\pi ^{3}+1423084718805750(-1)^{i-1}A_i \pi ^{4}+108409908481875\pi ^{5}, \\ D_1^i= & {} 234906113646548A_i ^{4}+364260716787660(-1)^{i-1}A_i ^{3}\pi +210858535364400A_i ^{2}\pi ^{2} \\&+53999601405750(-1)^{i-1}A_i \pi ^{3}+5162376594375\pi ^{4}. \end{aligned}$$

The coefficients \(E_2^i \), \(E_3^i \) and \(D_2^i \) in Eq. (31) are given by

$$\begin{aligned} E_2^i= & {} 2.94613\times 10^{-13}(-1)^{i-1}A_i -7.93131\times 10^{-13}A_i ^{2}-777.231(-1)^{i-1}A_i ^{3}+772.927A_i ^{4},\\ E_3^i= & {} -9.81257\times 10^{-29}+1.66583\times 10^{-28}(-1)^{i-1}A_i +3.62553\times 10^{-12}A_i ^{2}\\&-9.46558\times 10^{-12}(-1)^{i-1}A_i ^{3} \\&-8881.75A_i ^{4}+9893.47(-1)^{i-1}A_i ^{5}, \\ D_2^i= & {} 8.48703\times 10^{-12}(-1)^{i-1}-150948A_i +446559(-1)^{i-1}A_i ^{2}-427380A_i ^{3}+131072(-1)^{i-1}A_i ^{4}. \end{aligned}$$

The coefficients \(E_k^i \left( {k=4,5,6,7} \right) \) and \(D_3^i \) in Eq. (36) are given by

$$\begin{aligned} E_4^i= & {} -3.71253\times 10^{-36}(-1)^{i-1}+5.07015\times 10^{-35}(-1)^{i-1}A_i^2 -0.0192766A_i^3\\&+2.46728\times 10^{-13}(-1)^{i-1}A_i^4 \\&-1.69077\times 10^{14}A_i^5 +4.92658\times 10^{14}(-1)^{i-1}A_i^6 -7.91152\times 10^{14}A_i^7\\&+7.56128\times 10^{14}(-1)^{i-1}A_i ^{8} \\&-4.30023\times 10^{14}A_i ^{9}+1.34733\times 10^{14}(-1)^{i-1}A_i ^{10}-1.79394\times 10^{13}A_i ^{11}, \\ E_5^i= & {} -7.42507\times 10^{-36}(-1)^{i-1}A_i^2 -1.23364\times 10^{12}(-1)^{i-1}A_i^4 +1.0452\times 10^{13}A_i^5 \\&-3.70693\times 10^{13}(-1)^{i-1}A_i^6 +7.15405\times 10^{13}A_i^7 -8.13040\times 10^{13}(-1)^{i-1}A_i ^{8} \\&+5.44889\times 10^{13}A_i ^{9}-1.99578\times 10^{13}(-1)^{i-1}A_i ^{10}+3.08332\times 10^{12}A_i ^{11}, \\ E_6^i= & {} -5.73292\times 10^{-60}(-1)^{i-1}+4.81592\times 10^{-43}A_i -2.05164\\&\times 10^{-26}(-1)^{i-1}A_i^2 +2.50484\times 10^{-10}A_i^3 \\&-1.35661\times 10^{6}(-1)^{i-1}A_i^4 -5.40672\times 10^{6}A_i^5 +8.45414\times 10^{7}(-1)^{i-1}A_i^6 +8.40628\times 10^{20}A_i^7 \\&-4.02267\times 10^{21}(-1)^{i-1}A_i ^{8}+2.01162\times 10^{22}A_i ^{9}-6.01020\times 10^{22}(-1)^{i-1}A_i ^{10} \\&+1.19199\times 10^{23}A_i ^{11}-1.64759\times 10^{23}(-1)^{i-1}A_i ^{12}+1.61944\times 10^{23}A_i ^{13} \\&-1.13183\times 10^{23}(-1)^{i-1}A_i ^{14}+5.51174\times 10^{22}A_i ^{15}-1.78097\times 10^{22}(-1)^{i-1}A_i ^{16} \\&+3.43628\times 10^{21}A_i ^{17}-2.99898\times 10^{20}(-1)^{i-1}A_i ^{18},\\ E_7^i= & {} 8.48703\times 10^{-12}(-1)^{i-1}-150948A_i +446559(-1)^{i-1}A_i^2 -427380A_i^3 +131072(-1)^{i-1}A_i^4 ,\\ D_3^i= & {} 2.25773\times 10^{-44}-2.16890\times 10^{-27}(-1)^{i-1}A_i +7.55671\times 10^{-11}A_i^2 -1.12808\times 10^{6}(-1)^{i-1}A_i^3 \\&+6.10963\times 10^{21}A_i^4 -7.82821\times 10^{22}(-1)^{i-1}A_i^5 +4.60599\times 10^{23}A_i^6 -1.64753\times 10^{24}(-1)^{i-1}A_i^7 \\&+3.99631\times 10^{24}A_i^8 -6.94016\times 10^{24}(-1)^{i-1}A_i^9 +8.87557\times 10^{24}A_i^{10} \\&-8.46095\times 10^{24}(-1)^{i-1}A_i^{11} +6.01046\times 10^{24}A_i^{12} -3.14140\times 10^{24}(-1)^{i-1}A_i^{13} \\&+1.17374\times 10^{24}A_i^{14} -2.96755\times 10^{23}(-1)^{i-1}A_i^{15} +4.54833\times 10^{22}A_i^{16} \\&-3.18991\times 10^{21}(-1)^{i-1}A_i^{17}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wu, B., Chen, X. et al. Analytical approximate solutions for asymmetric conservative oscillators. Arch Appl Mech 89, 2265–2279 (2019). https://doi.org/10.1007/s00419-019-01575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01575-4

Keywords

Navigation