Skip to main content
Log in

New analytic buckling solutions of moderately thick clamped rectangular plates by a straightforward finite integral transform method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A first endeavor is made in this paper to explore new analytic buckling solutions of moderately thick rectangular plates by a straightforward double finite integral transform method, with focus on typical non-Lévy-type fully clamped plates that are not easy to solve in a rigorous way by the other analytic methods. Solving the governing higher-order partial differential equations with prescribed boundary conditions is elegantly reduced to processing four sets of simultaneous linear equations, the existence of nonzero solutions of which determines the buckling loads and associated mode shapes. Both numerical and graphical results confirm the validity and accuracy of the developed method and solutions by favorable comparison with the literature and finite element analysis. The succinct but effective technique presented in this study can provide an easy-to-implement theoretical tool to seek more analytic solutions of complex boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kirchoff, G.: Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. (Crelle’s J.) 40, 51–88 (1850)

    Google Scholar 

  2. Reissner, E.: The Effect of Transverse Shear deformation on the bending of elastic plates. J. Appl. Mech. Trans. ASME 12(2), A69–A77 (1945)

    MathSciNet  MATH  Google Scholar 

  3. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. Trans. ASME 18(1), 31–38 (1951)

    MATH  Google Scholar 

  4. Srinivas, S., Rao, A.: Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct. 6(11), 1463–1481 (1970)

    Article  MATH  Google Scholar 

  5. Wang, C., Xiang, Y., Kitipornchai, S., Liew, K.: Buckling solutions for Mindlin plates of various shapes. Eng. Struct. 16(2), 119–127 (1994)

    Article  Google Scholar 

  6. Liew, K.: Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and thep-Ritz method. J. Sound Vib. 198(3), 343–360 (1996)

    Article  Google Scholar 

  7. Wang, C.M., Lim, G.T., Reddy, J.N., Lee, K.H.: Relationships between bending solutions of Reissner and Mindlin plate theories. Eng. Struct. 23, 838–849 (2001)

    Article  Google Scholar 

  8. Ghannadpour, S., Ovesy, H., Zia-Dehkordi, E.: Buckling and post-buckling behaviour of moderately thick plates using an exact finite strip. Comput. Struct. 147, 172–180 (2015)

    Article  Google Scholar 

  9. Jafari, N., Azhari, M.: Buckling of moderately thick arbitrarily shaped plates with intermediate point supports using a simple hp-cloud method. App. Math. Comput. 313, 196–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Civalek, Ö.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49(6), 752–765 (2007)

    Article  Google Scholar 

  11. Bui, T., Nguyen, M., Zhang, C.: Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng. Anal. Bound. Elements 35(9), 1038–1053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bodaghi, M., Saidi, A.R.: Thermoelastic buckling behavior of thick functionally graded rectangular plates. Arch. Appl. Mech. 81(11), 1555–1572 (2011)

    Article  MATH  Google Scholar 

  13. Nazarimofrad, E., Zahrai, S.M., Kholerdi, S.E.S.: Effect of rotationally restrained and Pasternak foundation on buckling of an orthotropic rectangular Mindlin plate. Mech. Adv. Mater. Struct. 25(7), 592–599 (2018)

    Article  Google Scholar 

  14. Yiotis, A.J., Katsikadelis, J.T.: Buckling analysis of thick plates on biparametric elastic foundation: a MAEM solution. Arch. Appl. Mech. 88(1–2), 83–95 (2018)

    Article  Google Scholar 

  15. Li, R., Ni, X., Cheng, G.: Symplectic superposition method for benchmark flexure solutions for rectangular thick plates. J. Eng. Mech. 141(2), 04014119 (2015)

    Article  Google Scholar 

  16. Li, R., Wang, P., Tian, Y., Wang, B., Li, G.: A unified analytic solution approach to static bending and free vibration problems of rectangular thin plates. Sci. Rep. 5, 17054 (2015)

    Article  Google Scholar 

  17. Li, R., Zheng, X., Wang, H., Xiong, S., Yan, K., Li, P.: New analytic buckling solutions of rectangular thin plates with all edges free. Int. J. Mech. Sci. 144, 67–73 (2018)

    Article  Google Scholar 

  18. Yao, W., Zhong, W., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  19. Lim, C.W., Lu, C.F., Xiang, Y., Yao, W.: On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int. J. Eng. Sci. 47(1), 131–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lim, C.W.: Symplectic elasticity approach for free vibration of rectangular plates. Adv. Vib. Eng. 9(2), 159–163 (2010)

    Google Scholar 

  21. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63(5), 050802 (2010)

    Article  Google Scholar 

  22. Li, R., Zhong, Y., Tian, B., Liu, Y.: On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Appl. Math. Lett. 22(12), 1821–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, B., Li, R., Zhong, Y.: Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations. Appl. Math. Model. 39(1), 128–136 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, S., Xu, L., Li, R.: New exact series solutions for transverse vibration of rotationally-restrained orthotropic plates. Appl. Math. Model. 65, 348–360 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nwoji, C.U., Onah, H.N., Mama, B.O., Ike, C.C., Ikwueze, E.U.: Elastic buckling analysis of simply supported thin plates using the double finite Fourier sine integral transform method. Explor. J. Eng. Technol. 1(1), 37–47 (2017)

    Google Scholar 

  26. Mama, B.O., Nwoji, C.U., Ike, C.C., Onah, H.N.: Analysis of simply supported rectangular Kirchhoff plates by the finite Fourier sine transform method. Int. J. Adv. Eng. Res. Sci. 4(3), 285–291 (2017)

    Article  Google Scholar 

  27. Xing, Y., Xiang, W.: Closed-form solutions for eigenbuckling of rectangular Mindlin plate. Int. J. Struct. Stab. Dyn. 16(8), 1550079 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. ABAQUS: Analysis User’s Guide V6.13. Dassault Systèmes, Pawtucket (2013)

  29. Teo, T., Liew, K.: A differential quadrature procedure for three-dimensional buckling analysis of rectangular plates. Int. J. Solids Struct. 36(8), 1149–1168 (1999)

    Article  MATH  Google Scholar 

  30. Xiang, Y.: Numerical developments in solving the buckling and vibration of Mindlin plates. Ph.D. Thesis, The University of Queensland, Australia (1993)

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Young Elite Scientists Sponsorship Program by CAST (No. 2015QNRC001), Opening Fund of State Key Laboratory of Nonlinear Mechanics, Chinese Academy of Sciences, and Fundamental Research Funds for the Central Universities of China (No. DUT18GF101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Definition of double finite integral transforms

The following double finite integral transforms are used for W, \(\varphi _x \) and \(\varphi _y \):

$$\begin{aligned} W^{\mathrm{ss}}= & {} \mathop \int \limits _0^a {\mathop \int \limits _0^b {W\left( {x,y} \right) \sin (\alpha _m x)\sin (\beta _n y)\hbox {d}x\hbox {d}y} } \\ \varphi _x^{\mathrm{cs}}= & {} \mathop \int \limits _0^a {\mathop \int \limits _0^b {\varphi _x \left( {x,y} \right) } } \cos (\alpha _m x)\sin (\beta _n y)\hbox {d}x\hbox {d}y \\ \varphi _y^{\mathrm{sc}}= & {} \mathop \int \limits _0^a {\mathop \int \limits _0^b {\varphi _y \left( {x,y} \right) } } \sin (\alpha _m x)\cos (\beta _n y)\hbox {d}x\hbox {d}y \\ \end{aligned}$$

where the superscripts “SS”, “CS” and “SC” represent the double sine, cosine-sine and sine-cosine integral transforms with respect to variables x and y.

Appendix B: Matrix elements in Eq. (12)

$$\begin{aligned} T_{11}= & {} \frac{C\left[ {C+D\left( {\alpha _m^2 +\beta _n^2 } \right) } \right] }{\left[ {C+D\left( {\alpha _m^2 +\beta _n^2 } \right) } \right] \left[ {\alpha _m^2 \left( {C+N_x } \right) +\beta _n^2 \left( {C+N_y } \right) } \right] -C^{2}\left( {\alpha _m^2 +\beta _n^2 } \right) },\\ T_{12}= & {} -\frac{CD\alpha _m }{CN_x \alpha _m^2 +D\alpha _m^4 \left( {C+N_x } \right) +\beta _n^2 \left[ {CN_y +D\alpha _m^2 \left( {2C+N_x +N_y } \right) } \right] +D\beta _n^4 \left( {C+N_y } \right) },\\ T_{13}= & {} -\frac{CD\beta _n }{CN_x \alpha _m^2 +D\alpha _m^4 \left( {C+N_x } \right) +\beta _n^2 \left[ {CN_y +D\left( {2C+N_x +N_y } \right) \alpha _m^2 } \right] +D\beta _n^4 \left( {C+N_y } \right) },\\ T_{21}= & {} -\frac{C}{D}T_{12} ,\\ T_{22}= & {} -\frac{D\left\{ {\begin{array}{l} \alpha _m^2 \left( {C+N_x } \right) \left[ {2C+D\alpha _m^2 \left( {1-\mu } \right) } \right] \\ +\beta _n^2 \left\{ {2CN_y +D\alpha _m^2 \left[ {C\left( {3-\mu } \right) +2N_x +N_y \left( {1-\mu } \right) } \right] } \right\} +2D\beta _n^4 \left( {C+N_y } \right) \\ \end{array}} \right\} }{\left[ {2C+D\left( {1-\mu } \right) \left( {\alpha _m^2 +\beta _n^2 } \right) } \right] \left\{ {\begin{array}{l} CN_x \alpha _m^2 +D\alpha _m^4 \left( {C+N_x } \right) \\ +\beta _n^2 \left[ {CN_y +D\alpha _m^2 \left( {2C+N_x +N_y } \right) } \right] +D\beta _n^4 \left( {C+N_y } \right) \\ \end{array}} \right\} },\\ T_{23}= & {} -\frac{D\alpha _m \beta _n \left\{ {2C^{2}-D\left( {1+\mu } \right) \left[ {\alpha _m^2 \left( {C+N_x } \right) +\beta _n^2 \left( {C+N_y } \right) } \right] } \right\} }{\left[ {2C+D\left( {1-\mu } \right) \left( {\alpha _m^2 +\beta _n^2 } \right) } \right] \left\{ {\begin{array}{l} CN_x \alpha _m^2 +D\alpha _m^4 \left( {C+N_x } \right) \\ +\beta _n^2 \left[ {CN_y +D\alpha _m^2 \left( {2C+N_x +N_y } \right) } \right] +D\beta _n^4 \left( {C+N_y } \right) \\ \end{array}} \right\} },\\ T_{31}= & {} -\frac{C}{D}T_{13} ,\\ T_{32}= & {} -T_{23} ,\\ T_{33}= & {} -\frac{D\left\{ {\begin{array}{l} 2CN_x \alpha _m^2 +2D\alpha _m^4 \left( {C+N_x } \right) \\ +\beta _n^2 \left\{ {2C\left( {C+N_y } \right) +D\alpha _m^2 \left[ {C\left( {3-\mu } \right) +N_x \left( {1-\mu } \right) +2N_y } \right] } \right\} +D\beta _n^4 \left( {1-\mu } \right) \left( {C+N_y } \right) \\ \end{array}} \right\} }{\left[ {2C+D\left( {1-\mu } \right) \left( {\alpha _m^2 +\beta _n^2 } \right) } \right] \left\{ {\begin{array}{l} CN_x \alpha _m^2 +D\alpha _m^4 \left( {C+N_x } \right) \\ +\beta _n^2 \left[ {CN_y +D\alpha _m^2 \left( {2C+N_x +N_y } \right) } \right] +D\beta _n^4 \left( {C+N_y } \right) \\ \end{array}} \right\} }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Wang, H., Zheng, X. et al. New analytic buckling solutions of moderately thick clamped rectangular plates by a straightforward finite integral transform method. Arch Appl Mech 89, 1885–1897 (2019). https://doi.org/10.1007/s00419-019-01549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01549-6

Keywords

Navigation