Skip to main content
Log in

Crack analysis of circular bars reinforced by a piezoelectric layer under torsional transient loading

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this article, the transient response of a cylinder, with a piezoelectric coating, weakened by multiple radial cracks is investigated. The problem is under torsional transient loading. First, the solution of the problem, weakened by a Volterra-type screw dislocation, is achieved by using Laplace and the finite Fourier sine transform. The solution is obtained for displacement and stress fields in the bar with a piezoelectric layer. At the next step, the dislocation solution is used to derive a set of Cauchy singular integral equations for analysis of bars with a circular cross section containing some radial cracks. The solution of the singular integral equations is used to determine the torsional rigidity of the cross section and also the stress intensity factors of the crack tips. In addition, several examples are presented to show the effect of the piezoelectric coating and torsional transient loading on the stress intensity factors and torsional rigidity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Li, C., Duan, Z., Zou, Z.: Torsional impact response of a penny-shaped interface crack in bonded materials with a graded material interlayer. J. Appl. Mech. 69, 303–308 (2002)

    Article  MATH  Google Scholar 

  2. Atsumi, A., Shindo, Y.: Torsional impact response in an infinite cylinder with a circumferential edge crack. J. Appl. Mech. 49, 531–535 (1982)

    Article  MATH  Google Scholar 

  3. Li, C., Weng, G.J., Duan, Z.: Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. Int. J. Solids Struct. 38, 7473–7485 (2001)

    Article  MATH  Google Scholar 

  4. Ueda, S., Shindo, Y., Atsumi, A.: Torsional impact response of a penny-shaped crack lying on a bimaterial interface. Eng. Fract. Mech. 18, 1059–1066 (1983)

    Article  Google Scholar 

  5. Ueda, S., Shindo, Y., Atsumi, A.: Torsional impact response of a penny-shaped interface crack in a layered composite. Eng. Fract. Mech. 19, 1095–1104 (1984)

    Article  Google Scholar 

  6. Feng, W.J., Su, R.K.L., Jiang, Z.Q.: Torsional impact response of a cylindrical interface crack between a functionally graded interlayer and a homogeneous cylinder. Compos. Struct. 68, 203–209 (2005)

    Article  Google Scholar 

  7. Sih, G.C., Embley, G.T.: Sudden twisting of a penny-shaped crack. J. Appl. Mech. 39, 395–400 (1972)

    Article  MATH  Google Scholar 

  8. Vafa, J., Fariborz, S.: Transient analysis of multiply interacting cracks in orthotropic layers. Eur. J. Mech. A/Solids 60, 254–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ecsedi, I., Baksa, A.: Prandtl’s formulation for the Saint-Venant’s torsion of homogeneous piezoelectric beams. Int. J. Solids Struct. 47, 3076–3083 (2010)

    Article  MATH  Google Scholar 

  10. Vafa, J.P., Baghestani, A.M., Fariborz, S.J.: Transient screw dislocation in exponentially graded FG layers. Arch. Appl. Mech. 85, 1–11 (2015)

    Article  MATH  Google Scholar 

  11. Gao, C.F., Wang, M.Z.: General treatment of mode III interfacial crack problems in piezoelectric materials. Arch. Appl. Mech. 71, 296–306 (2001)

    Article  MATH  Google Scholar 

  12. Hassani, A.R., Monfared, M.M.: Analysis of cracked bars with rectangular cross-section and isotropic coating layer under torsion. Int. J. Mech. Sci. 128–129, 23–36 (2017)

    Article  Google Scholar 

  13. Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)

    Article  Google Scholar 

  14. Kuang, Z.B.: Theory of Electroelasticity. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Pak, Y.E.: Circular inclusion problem in antiplane piezoelectricity. Int. J. Solids Struct. 29, 2403–2419 (1992)

    Article  MATH  Google Scholar 

  16. Chue, C.H., Wei, W.B., Liu, T.J.C.: The antiplane electro-mechanical field of a piezoelectric wedge under a pair of concentrated forces and free charges. J. Chin. Inst. Eng. 26, 575–583 (2003)

    Article  Google Scholar 

  17. Gao, C.-F., Balke, H.: Fracture analysis of circular-arc interface cracks in piezoelectric materials. Int. J. Solids Struct. 40, 3507–3522 (2003)

    Article  MATH  Google Scholar 

  18. Chue, C.H., Liu, W.J.: Antiplane electro-mechanical field of a piezoelectric finite wedge under a pair of concentrated forces and free charges. J. Chin. Inst. Eng. 27, 841–850 (2004)

    Article  Google Scholar 

  19. Weertman, J., Weertman, J.R.: Elementary Dislocation Theory. Macmillan, New York (1964)

    MATH  Google Scholar 

  20. Wang, Y.: Torsion of a thick-walled cylinder with an external crack: boundary collocation method. Theor. Appl. Fract. Mech. 14, 267–273 (1990)

    Article  Google Scholar 

  21. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York (2007)

    MATH  Google Scholar 

  22. Faal, R.T., Fariborz, S.J., Daghyani, H.R.: Antiplane deformation of orthotropic strips with multiple defects. J. Mech. Mater. Struct. 1, 1097–1114 (2006)

    Article  Google Scholar 

  23. Hassani, A.R., Faal, R.T.: Torsion analysis of cracked circular bars actuated by a piezoelectric coating. Smart Mater. Struct. 25, 125030 (2016)

    Article  Google Scholar 

  24. Tao, F.M., Tang, R.J.: Saint-Venant’s torsion problem for a composite circular cylinder with aninternal edge crack. Appl. Math. Mech. Engl. Ed. 14, 507–516 (1993)

    Article  MATH  Google Scholar 

  25. Hassani, A.R., Monfared, M.M.: Analysis of an orthotropic circular bar weakened by multiple radial cracks under torsional transient loading. Eng. Fract. Mech. 186, 300–315 (2017)

    Article  Google Scholar 

  26. Faal, R.T., Fotuhi, A.R., Fariborz, S.J., Daghyani, H.R.: Antiplane stress analysis of an isotropic wedge with multiple cracks. Int. J. Solids Struct. 41, 4535–4550 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Islamic Azad University, Karaj Branch (Iran), for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Kernels of the integral equations are:

$$\begin{aligned}&k_{ij} ({p,q,s})=\sqrt{({r_j^{\prime }})^{2} + ({r_j \theta _j^{\prime }})^{2}} \left\{ \frac{G^{2}}{2J_0} ({R_1^2 -r_j^2})r_i +\frac{G}{2\pi r_i} \mathop \sum \limits _{n=1}^\infty {\Omega }_n\right. \\&\quad \left( {\left( {\frac{r_j}{R_1}} \right) ^{N_1} -1} \right) \left( -\left( {\frac{r_i}{R_2}} \right) ^{N_1} -\left( {\frac{r_i}{r_j}} \right) ^{N_1} +C_\mathrm{{eq}} \left( {\left( {\frac{r_i}{R_1}} \right) ^{N_1} +\left( {\frac{r_i R_1}{r_j R_2}} \right) ^{N_1}} \right) \right) \, \mathrm{{cos}} ({n \theta }) \\&\qquad -\frac{G}{2\pi r_i} \mathop \sum \limits _{n=1}^\infty \frac{1}{1-\left( {\frac{R_1}{R_2}} \right) ^{2n}C_\mathrm{{eq}}} \\&\quad \left( {\left( {\frac{r_j}{R_1}} \right) ^{n}-1} \right) \left( -\left( {\frac{r_i}{R_2}} \right) ^{n}-\left( {\frac{r_i}{r_j}} \right) ^{n}+C_\mathrm{{eq}} \left( {\left( {\frac{r_i}{R_1}} \right) ^{n}+\left( {\frac{r_i R_1}{r_j R_2}} \right) ^{n}} \right) \right) \mathrm{{cos}} ({n \theta }) \\&\qquad +\frac{G}{4\pi r_i ({C_\mathrm{{eq}} +1})}\mathop \sum \limits _{m=0}^\infty \eta ^{m} \left[ {2\left( {F_m \left( {\frac{r_i}{R_1} ,\theta } \right) -F_m \left( {\frac{R_1 r_i}{R_2^2} ,\theta } \right) } \right) } \right. \\&\qquad +\,({C_\mathrm{{eq}} -1})\left( {F_m \left( {\frac{r_j r_i}{R_1^2} ,\theta } \right) -F_m \left( {\frac{R_1^2 r_i}{R_2^2 r_j} ,\theta } \right) } \right) \\&\qquad \left. \left. +\,({1+C_\mathrm{{eq}}})\left( {F_m \left( {\frac{r_j r_i}{R_2^2} ,\theta } \right) -F_m \left( {\frac{r_i}{r_j} ,\theta } \right) } \right) \right] \right\} , \quad 0\le r_i \le r_j \\&k_{ij} ({p,q,s})=\sqrt{\left( {r_j^{\prime }} \right) ^{2}+\left( {r_j \theta _j^{\prime }} \right) ^{2}} \\&\quad \left\{ {\frac{G^{2}}{2J_0} ({R_1^2 -r_j^2})r_i } +\frac{G}{2\pi r_i} \mathop \sum \limits _{n=1}^\infty \right. \\&\quad \left( {\Omega }_n \left( {\left( \left( {\frac{r_i r_j}{R_2^2}} \right) ^{N_1} +C_\mathrm{{eq}} \left( {\frac{r_i r_j}{R_1^2}} \right) ^{N_1} +2\left( {\left( {\frac{R_1}{R_2}} \right) ^{2N_1} -1} \right) \left( {\frac{r_i}{R_1}} \right) ^{N_1} {\overline{C_\mathrm{{eq}}}} \right) } \right) \right. \\&\qquad \left. -\frac{n^{2}}{N_1^2} \left( {\frac{r_j}{r_i}} \right) ^{N_1} \right) \, \mathrm{{cos}} ({n \theta }) \\&\qquad -\frac{G}{2\pi r_i} \mathop \sum \limits _{n=1}^\infty \left( \frac{1}{1-\left( {\frac{R_1}{R_2}} \right) ^{2n}C_\mathrm{{eq}}} \left( \left( {\frac{r_i r_j}{R_2^2}} \right) ^{n}+C_\mathrm{{eq}} \left( {\frac{r_i r_j}{R_1^2}} \right) ^{n} \right. \right. \\&\qquad \left. \left. +\,2\left( {\left( {\frac{R_1}{R_2}} \right) ^{2n}-1} \right) \left( {\frac{r_i}{R_1}} \right) ^{n}{\overline{C_\mathrm{{eq}}}} \right) -\left( {\frac{r_j}{r_i}} \right) ^{n} \right) \mathrm{{cos}} ({n \theta }) +\frac{G}{4\pi r_i ({C_\mathrm{{eq}} +1})} \\&\quad \left[ {({C_\mathrm{{eq}} +1})F_0 \left( {\frac{r_j}{r_i} ,\theta } \right) } \left. -\mathop \sum \limits _{m=0}^\infty \eta ^{m}\left( 2F_m \left( {\frac{R_1 r_i}{R_2^2} ,\theta } \right) -2F_m \left( {\frac{r_i}{R_1} ,\theta } \right) \right. \right. \right. \\&\qquad \left. \left. \left. -\,({C_\mathrm{{eq}} -1})F_m \left( {\frac{r_j r_i}{R_1^2} ,\theta } \right) -({C_\mathrm{{eq}} +1})F_m \left( {\frac{r_j r_i}{R_2^2} ,\theta } \right) \right) \right] \right\} , \quad r_j \le r_i \le R_1 \end{aligned}$$

The left side of the integral equation (33) is

$$\begin{aligned} Q_i ({r_i, \theta _i, s})=-\frac{4e_{15} R_2}{\epsilon _{11} \pi rs}D_0 \mathop \sum \limits _{n=1}^\infty {\int }_{-1}^1 {\varLambda }_n \left( {\frac{r}{R_2}} \right) ^{N_1} \mathrm{{cos}} ({n \theta })\mathrm{{d}}t-\frac{GM_0}{J_0 s}r_i \, \mathrm{{cos}}\varphi _i \end{aligned}$$

where all the parameters with index i are functions of p and those with index j are functions of q.

Appendix B

1.1 Proof of Eq. (26)

We use a formula given in the appendix of Ref. [26]

$$\begin{aligned} \mathop \sum \limits _{n=1}^\infty k^{n}\mathrm{{cos}}({n \theta })=\frac{-k^{2}+k\mathrm{{cos}}(\theta )}{1+k^{2}-2 k\mathrm{{cos}}(\theta )} \end{aligned}$$
(B1)

Equation (B1) can be rewritten as

$$\begin{aligned} \mathop \sum \limits _{n=1}^\infty k^{n}\mathrm{{cos}}({n \theta }) = \frac{1}{2}\frac{-k+ \mathrm{{cos}}(\theta )}{\left( {\frac{1}{k}+k} \right) /2-\mathrm{{cos}}(\theta )} \end{aligned}$$
(B2)

With the aid of formulas between hyperbolic functions, we can achieve Eq. (26)

$$\begin{aligned} \mathop \sum \limits _{n=1}^\infty k^{n}\mathrm{{cos}}({n \theta })= & {} \frac{1}{2}\frac{-\mathrm{{sin}}h\left( {\ln \left( k \right) } \right) -\mathrm{{cos}}h\left( {\mathrm{{ln}}\left( k \right) } \right) + \mathrm{{cos}}(\theta )}{\mathrm{{cos}}h\left( {\mathrm{{ln}}\left( k \right) } \right) -\mathrm{{cos}}(\theta )} \nonumber \\= & {} -\frac{1}{2}\left( {\frac{\mathrm{{sin}}h\left( {\ln \left( k \right) } \right) }{\mathrm{{cos}}h\left( {\ln \left( k \right) } \right) -\mathrm{{cos}}(\theta )}+1} \right) \end{aligned}$$
(B3)

1.2 Proof of Eq. (27)

When \(n\rightarrow \infty \), \(N_1\) can be approximated with n. Then, we can use expansion of \({\Omega }_n\) as

$$\begin{aligned} \mathop {\lim } \limits _{N_1 \rightarrow n} {\Omega }_n= & {} \mathop {\hbox {lim}}\limits _{N_1 \rightarrow n} \frac{n^{2}}{N_1^2 \left( {1-\left( {\frac{R_1}{R_2}} \right) ^{2N_1} C_\mathrm{{eq}}} \right) }=\frac{1}{1-\left( {\frac{R_1}{R_2}} \right) ^{2n}C_\mathrm{{eq}}} =\mathop \sum \limits _{m=0}^\infty \left( {\left( {\frac{R_1}{R_2}} \right) ^{2n}C_\mathrm{{eq}}} \right) ^{m} \nonumber \\= & {} \mathop \sum \limits _{m=0}^\infty \left( {\left( {\frac{R_1}{R_2}} \right) ^{2n}\frac{\frac{C_{44}}{G}+\frac{e_{15}^2}{G \epsilon _{11}} -1}{\frac{C_{44}}{G}+\frac{e_{15}^2}{G \epsilon _{11}} +1}} \right) ^{m}=\mathop \sum \limits _{m=0}^\infty \left( {\left( {\frac{R_1}{R_2}} \right) ^{2n}\frac{\frac{C_{44}}{G}+\frac{e_{15}^2}{G \epsilon _{11}} -1}{\frac{C_{44}}{G}+\frac{e_{15}^2}{G \epsilon _{11}} +1}} \right) ^{m} \end{aligned}$$
(B4)

By defining \(\eta =\frac{e_{15}^2 + \epsilon _{11} C_{44} -G \epsilon _{11}}{e_{15}^2 + \epsilon _{11} C_{44} +G \epsilon _{11}}\) we have

$$\begin{aligned} \mathop {\lim } \limits _{N_1 \rightarrow n} {\Omega }_n =\mathop \sum \limits _{m=0}^\infty \eta ^{m}\left( {\left( {\frac{R_1}{R_2}} \right) ^{2n}} \right) ^{m} \end{aligned}$$
(B5)

With the aid of Eq. (B5), we follow the proof of (27) as

$$\begin{aligned} \mathop {\hbox {lim}}\limits _{N_1 \rightarrow n} \mathop \sum \limits _{n=1}^\infty {\Omega }_n x^{n} \mathrm{{cos}} ({n \theta })=\mathop \sum \limits _{m=0}^\infty \mathop \sum \limits _{n=1}^\infty \eta ^{m}\left( {\left( {\frac{R_1}{R_2}} \right) ^{2m}x} \right) ^{n} \mathrm{{cos}} ({n \theta })=\mathop \sum \limits _{m=0}^\infty \mathop \sum \limits _{n=1}^\infty \eta ^{m} ({\kappa _m^2 x})^{n} \mathrm{{cos}} ({n \theta }) \end{aligned}$$
(B6)

By using Eq. (B3), Eq. (B6) is rewritten as

$$\begin{aligned} \mathop {\hbox {lim}}\limits _{N_1 \rightarrow n} \mathop \sum \limits _{n=1}^\infty {\Omega }_n x^{n} \mathrm{{cos}} ({n \theta })=-\frac{1}{2}\mathop \sum \limits _{m=0}^\infty \left( {\frac{\mathrm{{sin}}h ({\ln ({({R_1 /R_2})^{2m}x})})}{\mathrm{{cos}}h ({\ln ({({R_1 /R_2})^{2m}x})})- \mathrm{{cos}}(\theta )}+1} \right) \end{aligned}$$
(B7)

In the following discussion, Eq. (B7) can be expressed in terms of \(F_m ({x, \theta })\) as

$$\begin{aligned} \mathop {\hbox {lim}}\limits _{N_1 \rightarrow n} \mathop \sum \limits _{n=1}^\infty {\Omega }_n x^{n} \mathrm{{cos}} ({n \theta })=-\frac{1}{2}\mathop \sum \limits _{m=0}^\infty ({F_m ({x, \theta })+1}) \end{aligned}$$
(B8)

1.3 Proof of the Eq. (34):

The domain of integration (33) is divided into three subregions \(r<a\), \(R_1 >r\ge a\) and \(R_2 \ge r\ge R_1\). Substituting Eqs. (3) and (14) into Eq. (33) results in

$$\begin{aligned} M= & {} J\alpha =\alpha G\int _0^{2\pi } \int _0^{R_1} r^{2}\left( {\frac{1}{r}\frac{\partial \omega ({r, \theta })}{\partial \theta } +r} \right) \mathrm{{d}}r\mathrm{{d}}\theta \nonumber \\&+\int _0^{2\pi } \int _{R_1} ^{R_2} r^{2}\left( {\alpha \left( {C_{44} \left( {\frac{1}{r}\frac{\partial \omega }{\partial \theta } +r} \right) +e_{15} \frac{1}{r}\frac{\partial \phi }{\partial \theta }} \right) } \right) \mathrm{{d}}r\mathrm{{d}}\theta \nonumber \\= & {} \alpha \left[ G\int _0^{2\pi } \frac{\partial \omega ({r, \theta })}{\partial \theta } \int _0^a r\mathrm{{d}}r\mathrm{{d}}\theta +G\int _0^{2\pi } \frac{\partial \omega ({r, \theta })}{\partial \theta } \int _a^{R_1} r\mathrm{{d}}r\mathrm{{d}}\theta +\frac{1}{2}\pi GR_1^4 \right. \nonumber \\&\quad \left. +\frac{1}{2}\pi C_{44} ({R_2^4 -R_1^4})+C_{44} \int _0^{2\pi } \frac{\partial \omega _3}{\partial \theta } \int _{R_1} ^{R_2} r\mathrm{{d}}r\mathrm{{d}}\theta +e_{15} \int _0^{2\pi } \frac{\partial \phi }{\partial \theta } \int _{R_1} ^{R_2} r\mathrm{{d}}r\mathrm{{d}}\theta \right] \end{aligned}$$
(B9)

We use some relations according to the definition of the dislocation cut as

$$\begin{aligned} \omega ({r, 2\pi })-\omega ({r,0})= & {} 0, \quad 0<r\le a \nonumber \\ \omega ({r, 2\pi })-\omega ({r,0})= & {} b_{z}/\alpha , \quad \alpha< r \le R_{1} \nonumber \\ \omega ({r, 2\pi })-\omega ({r,0})= & {} 0, \quad R_1<r\le R_2 \nonumber \\ \phi ({r, 2\pi })-\phi ({r,0})= & {} 0, \quad 0<r\le R_2 \end{aligned}$$
(B10)

Using the above equations, the proof is completed as

$$\begin{aligned} J= & {} J_0 -\frac{1}{2}({C_{44} ({R_2^2 -R_1^2})+G({R_1^2 -a^{2}})})\frac{b_z}{\alpha } \nonumber \\ J_0= & {} \frac{1}{2}\pi ({GR_1^4 +C_{44} ({R_2^4 -R_1^4})}) \end{aligned}$$
(B11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, R., Hassani, A.R. Crack analysis of circular bars reinforced by a piezoelectric layer under torsional transient loading. Arch Appl Mech 89, 1555–1578 (2019). https://doi.org/10.1007/s00419-019-01527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01527-y

Keywords

Navigation