Skip to main content
Log in

Bifurcations and post-critical behaviors of a nonlinear curved plate in subsonic airflow

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper visits the stability, bifurcations and post-critical behaviors of a nonlinear curved plate in a subsonic axial flow. The curved plate is simply supported and subjected to an initial horizontal tension. The plate is initially curved, and the initial shape is modeled by a shallow shell with constant curvature. The airflow is assumed incompressible, and the fluid force is considered as the sum of two parts: One is due to the plate deformation, and the other is to the plate initial shape. The Laplace’s equation is solved for the fluid force by placing a series of time-independent sources on the plate. The nonlinear axial strain due to large deformation is considered for the potential energy of the plate. Results show that the system has a fundamental and four bifurcated equilibrium solutions. The fundamental bifurcation is always supercritical; however, the secondary bifurcation is either supercritical or subcritical. The bifurcation regions are analyzed in parametric planes, and eight typical bifurcation processes are explored. There appear jump phenomena between the two stable states of system after the fundamental bifurcation. The combinations of designed parameters, including the plate initial curvature, horizontal tension and flow velocity, highly influence the bifurcation behaviors of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Raghunathan, R.S., Kim, H.D., Setoguchi, T.: Aerodynamics of high-speed railway trains. Prog. Aerosp. Sci. 38, 469–514 (2002)

    Article  Google Scholar 

  2. Ding, S.S., Li, Q., Tian, A.Q., Du, J., Liu, J.L.: Aerodynamic design on high-speed trains. Acta Mech. Sinica 32(2), 215–232 (2016)

    Article  Google Scholar 

  3. Li, P., Yang, Y.R., Zhang, M.L.: Melnikov’s method for chaos of a two-dimensional thin panel in subsonic flow with external excitation. Mech. Res. Commun. 38, 524–528 (2011)

    Article  MATH  Google Scholar 

  4. Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  5. Paidoussis, M.P.: Fluid-Structure Interactions. Slender Structures and Axial Flow, 1st edn. Elsevier Academic Press, London (2004)

    Google Scholar 

  6. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Dover publications Inc, Mineola, NewYork (1955)

    MATH  Google Scholar 

  7. Li, P., Yang, Y.R., Xu, W., Chen, G.: On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin plates subjected to external excitation. Arch. Appl. Mech. 82, 1251–1267 (2012)

    Article  MATH  Google Scholar 

  8. Kornecki, A., Dowell, E.H., O’Brien, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47, 163–178 (1974)

    Article  MATH  Google Scholar 

  9. Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H.: Nonlinear vibration of a curved beam under uniform base harmonic exciation with quadratic and cubic nonlinearities. J. Sound Vib. 330, 5151–5164 (2011)

    Article  Google Scholar 

  10. Choi, S.T., Chou, Y.T.: Vibration analysis of non-circular curved panels by the differential quadrature method. J. Sound Vib. 259, 525–539 (2003)

    Article  Google Scholar 

  11. Yamaguchi, T., Nagai, K., Qian, Q.: Chaotic vibrations of a cylindrical shell-panel with an in-plane elastic-support at boundary. Nonlinear Dyn. 13, 259–277 (1997)

    Article  MATH  Google Scholar 

  12. Bolotin, V.V.: Nonconservative Problems of Theroy of Elastic Stability. Macmillan, New York (1963)

    Google Scholar 

  13. Dowell, E.H.: Nonlinear flutter of curved plate. AIAA J. 7, 424–431 (1969)

    Article  MATH  Google Scholar 

  14. Dowell, E.H.: Nonlinear flutter of curved plate, II. AIAA J. 8, 259–261 (1970)

    Article  Google Scholar 

  15. Anderson, W.J.: Experiments on the flutter of flat and slightly curved panels at Mach number 2.81. Air Force Office of Scientific Research TN 2996, June 1962, California Institute of Technology, Pasadena, California

  16. Azzouz, M.S., Mokthar, W.A.: Fluid structure interaction nonlinear fllutter of cyclindrial panels. AIAA, p. 693 (2006)

  17. Azzouz, M.S., Mei, C.: Finite element time domain-model formulation for nonlinear flutter of cyclindrical panels. AIAA, p. 1732 (2006)

  18. Librescu, L., Marzocca, P., Silva, W.A.: Supersonic fluter and post-flutter of geometrically imperfect cylindrical panels. J. Spacr. Rockets 39(5), 802–812 (2002)

    Article  Google Scholar 

  19. Zhang, R.L., Yang, Z.C.: Bifurcation of the curved panel in supersoinic air flow. Chin. J. Theor. Appl. Mech. 42, 863–869 (2010). (in Chinese)

    Google Scholar 

  20. Yang, Z.C., Zhou, J., Gu, Y.S.: Nonlinear thermal flutter of heated curved panels in supersonic air flow. Chin. J. Theor. Appl. Mech. 44, 30–38 (2012). (in Chinese)

    Google Scholar 

  21. Fazelzadeh, S.A.: Chaotic behavior of nonlinear curved-panel in a supersoinc flow. Dyn. Contin. Discrete Ser. B 14, 793–809 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Holmes, P.J.: Pipes supported at both ends cannot flutter. J. Appl. Mech. ASME 45, 619–621 (1978)

    Article  MATH  Google Scholar 

  23. Wang, L., Dai, H.L., Qian, Q.: Dynamics of simply supported fluid-conveying pipes with geometric imperfections. J. Fluids Struct. 12, 97–106 (2012)

    Article  Google Scholar 

  24. Dodds Jr., H.L., Runyan, H.L.: Effect of high velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe. NASA Technical Note, p. D-2870 (1965)

  25. Pignataro, M., Rizzi, N., Luongo, A.: Stability, Bifurcation and Postcritical Behavior of Elastic Structures. Elsevier Science Publishing B.V., NewYork (1991)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos: 11302183; 11372257; 11072204) and the Applied and Basic Research Plans of Sichuan Province of China (Grant No: 2015JY0083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expression of \(\Delta _1\) in Eq. (3.3) is:

$$\begin{aligned} \begin{aligned} {\Delta _1}\left( {\lambda ,\gamma ,{R}} \right)&= {b_0}+{b_1}{\lambda ^3} + {b_2}{\lambda ^2} + {b_3}\lambda + {b_4}{\gamma ^2}\lambda + {b_5}{\gamma ^4}\lambda + {b_6}{\gamma ^2}{\lambda ^2}\\&\quad + {b_7}{\gamma ^6} + {b_8}{\gamma ^4} + {b_9}{\gamma ^2} + {b_{10}}R^3 + {b_{11}}R^2 + {b_{12}}R^2{\gamma ^2} + {b_{13}}R^2\lambda \\&\quad + {b_{14}}{R}{\gamma ^2}\lambda + {b_{15}}{R}\lambda + {b_{16}}{R}{\gamma ^2} + {b_{17}}{R}{\gamma ^4} + {b_{18}}{R}{\lambda ^2} + {b_{19}}{R} \end{aligned} \end{aligned}$$
(A.1)

where

$$\begin{aligned} \begin{aligned} {b_0}&=1.3676e{-3},{b_1}=-1.012e{-8},{b_2}=2.463{-6},{b_3}=-1.005e{-4},{b_4}=6.566e{-4};\\ {b_5}&=-4.256e{-3},{b_6}=-0.788e{-6},{b_7}=-4.475e{-3},{b_8}=4.20e{-2},{b_9}=1.64e{-2};\\ b_{10}&=-1.428e{-6},b_{11}=4.226e{-5},b_{12}=1.08e{-3},b_{13}=-1.034e{-6},b_{14}=-6.799e{-5};\\ b_{15}&=2.039e{-5},b_{16}=-9.324e{-3},b_{17}=-4.256e{-3},b_{18}=-2.499e{-7},b_{19}=-4.170e{-4}. \end{aligned} \end{aligned}$$

The expression of \(\Delta _2\) in Eq. (3.3) is:

$$\begin{aligned} \begin{aligned} {\Delta _2}\left( {\lambda ,\gamma ,{R}} \right)&={c_0} + {c_1}{R_0} + {c_2}\lambda + {c_3}\lambda {R} + {c_4}{\lambda ^2} + {c_5}{\gamma ^2}{R} + {c_6}{\lambda ^3} + {c_7}{\gamma ^2}\\&\quad + {c_8}{\lambda ^2}{R} + {c_9}{\gamma ^2}R^2 + {c_{10}}{\gamma ^2}\lambda + {c_{11}}{\gamma ^2}\lambda {R} + {c_{12}}{\lambda ^2}{\gamma ^2}\\&\quad + {c_{13}}{\lambda }{\gamma ^2}+ {c_{14}}{R}{\gamma ^4}+ {c_{15}}{\gamma ^4} + {c_{16}}{\lambda }R^2 +{c_{17}}R^3+{c_{18}}R^2 \end{aligned} \end{aligned}$$
(A.2)

where

$$\begin{aligned} \begin{aligned} {c_0}&=-2.8465e4,{c_1}=7.21e3,{c_2}=1.74e{2},{c_3}=2.08e{-2},{c_4}=5.0284e{-3},\\ {c_5}&= 7.168e3,{c_6}=3.63e-8,{c_7}=-1.010e5,{c_8}=1.508e{-7};{c_9}=-1.037e{2},\\ c_{10}&=-8.8165,c_{11}=2.74e{-1},c_{12}=-5.642e5;c_{13}=-0.4102e{-6};\\ c_{14}&=0.370e{-3}; c_{15}=0.73e{-3};c_{16}=1.64e{-10};c_{16}=4.502e{-13};c_{16}=1.13e{-5} \end{aligned} \end{aligned}$$

The expression of b in Eq. (3.19) and the coefficients in Eq. (3.20) are:

$$\begin{aligned} b=\gamma (a_3{\gamma ^2} +a_2\lambda _c^1 + a_1R +a_0) \end{aligned}$$
(A.3)

where

$$\begin{aligned} a_3=4.9536e{-5};a_2= -7.887{-5};a_1=6.9760e{-2};a_0=-3.437e{-1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhang, D., Li, Z. et al. Bifurcations and post-critical behaviors of a nonlinear curved plate in subsonic airflow. Arch Appl Mech 89, 343–362 (2019). https://doi.org/10.1007/s00419-018-1471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1471-x

Keywords

Navigation