Skip to main content
Log in

Dugdale plastic zone model of a penny-shaped crack in a magnetoelectroelastic cylinder under magnetoelectroelastic loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper extends the Dugdale plastic zone to the penny-shaped crack problem for a magnetoelectroelastic (MEE) cylinder, where the crack surfaces are assumed to be magnetoelectrically permeable. Using potential function theory and Hankel transform method, the present boundary value problem is translated into solving a sectionalized Fredholm integral equation of the second kind. The non-singular field solutions are analyzed, and the effects of the applied MEE loads and geometric dimension on the width of plastic zone and crack opening displacements are evaluated. Numerical results show that for the considered model, each of the far-field MEE combination load \(\lambda \), the far-field magnetoelectric combination load \(\lambda _{\mathrm{EH}}\) and the purely mechanical load \(\sigma _0\) applied in the far field, respectively, plays an important role in the present fracture analysis. For a given mechanical load and a fixed crack configuration, the negative magnetoelectric loads are prone to promote the crack growth and propagation than the positive ones. These should be helpful for the design and manufacture of MEE materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao, M.H., Yang, F., Liu, T.: Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86, 4397–4416 (2006)

    Article  Google Scholar 

  2. Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mech. Sin. 22, 233–242 (2006)

    Article  MATH  Google Scholar 

  3. Feng, W.J., Su, R.K.L., Pan, E.: Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material. Int. J. Fract. 146, 125–138 (2007)

    Article  MATH  Google Scholar 

  4. Feng, W.J., Pan, E., Wang, X.: Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int. J. Solids Struct. 44, 7955–74 (2007)

    Article  MATH  Google Scholar 

  5. Wang, B.L., Niraula, O.P.: Transient thermal fracture analysis of transversely isotropic magneto-electro-elastic materials. J. Therm. Stress. 30, 297–317 (2007)

    Article  Google Scholar 

  6. Wang, B.L., Sun, Y.G., Zhang, H.Y.: Analysis of a penny-shaped crack in magnetoelectroelastic materials. J. Appl. Phys. 103, 083530 (2008)

    Article  Google Scholar 

  7. Zhong, X.C.: Thickness effects for a penny-shaped dielectric crack in a magnetoelectroelastic layer. Philos. Mag. 90, 1327–1346 (2010)

    Article  Google Scholar 

  8. Zhong, X.C., Zhang, K.S.: Dynamic analysis of a penny-shaped dielectric crack in a magnetoelectroelastic solid under impacts. Eur. J. Mech. A Solids 29, 242–252 (2010)

    Article  MathSciNet  Google Scholar 

  9. Li, Y.S., Xu, Z.H., Feng, W.J.: Penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers. Acta Mech. Sin. 27, 371–381 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rekik, M., El-Borgi, S., El-Borgi, Z., Ounaies, Z.: The axisymmetric problem of a partially insulated mixed-mode crack embedded in a functionally graded pyro magneto-electro-elastic infinite medium subjected to thermal loading. J. Therm. Stress. 35, 947–975 (2012)

    Article  MATH  Google Scholar 

  11. Zhao, M.H., Guo, Z.H., Fan, C.Y., Pan, E.: Electric and magnetic polarization saturation and breakdown models for penny shaped cracks in 3D magnetoelectroelastic media. Int. J. Solids Struct. 50, 1747–1754 (2013)

    Article  Google Scholar 

  12. Zhao, M.H., Guo, Z.H., Fan, C.Y.: Numerical method for nonlinear models of penny-shaped cracks in three-dimensional magnetoelectroelastic media. Int. J. Fract. 183, 49–61 (2013)

    Article  Google Scholar 

  13. Rekik, M., El-Borgi, S., Ounaies, Z.: An axisymmetric problem of an embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium. Appl. Math. Model. 38, 1193–1210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L.L., Feng, W.J., Ma, P.: A penny-shaped magnetically dielectric crack in a magnetoelectroelastic cylinder under magnetoelectromechanical loads. ZAMM Z. Angew. Math. Mech. 96, 179–190 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hu, K.Q., Chen, Z.T.: Strip yield zone of a penny-shaped crack in a magnetoelectroelastic material under axisymmetric loadings. Acta Mech. 227, 2343–2360 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, Y.Z., Kuna, M.: General solutions of mechanical–electric–magnetic fields in magneto-electro-elastic solid containing a moving anti-plane crack and a screw dislocation. ZAMM Z. Angew. Math. Mech. 95, 703–713 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  18. Danyluk, H.T., Singh, B.M.: Plastic deformation in a thick transversely isotropic layer containing a penny-shaped crack. Acta Mech. 56, 75–92 (1985)

    Article  MATH  Google Scholar 

  19. Danyluk, H.T., Singh, B.M., Vrbik, J.: Ductile penny-shaped crack in a transversely isotropic cylinder. Int. J. Fract. 51, 331–342 (1991)

    Article  Google Scholar 

  20. Danyluk, H.T., Singh, B.M., Vrbik, J.: A Dugdale-type estimation of the plastic zone for a penny-shaped crack in a thick transversely isotropic layer due to radial shear. Eng. Fract. Mech. 5, 735–740 (1995)

    Article  Google Scholar 

  21. Li, X.Y., Yang, D., Chen, W.Q., Kang, G.Z.: Penny-shaped Dugdale crack in a transverse isotropic medium. Int. J. Fract. 176, 207–214 (2012)

    Article  Google Scholar 

  22. Zhao, M.H., Shen, Y.P., Liu, G.N., Liu, Y.J.: Dugdale model solutions for a penny-shaped crack in three-dimensional transversely isotropic piezoelectric media by boundary-integral equation method. Eng. Anal. Bound. Elem. 23, 573–576 (1999)

    Article  MATH  Google Scholar 

  23. Qin, Q.H., Wang, J.S., Li, X.L.: Effect of elastic coating on fracture behaviour of piezoelectric fibre with a penny-shaped crack. Compos. Struct. 75, 465–471 (2006)

    Article  Google Scholar 

  24. Hu, K.Q., Chen, Z.T.: Dugdale plastic zone of a penny-shaped crack in a piezoelectric material under axisymmetric loading. Acta Mech. 227, 899–912 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sneddon, I.N., Tait, R.J.: The effect of a penny-shaped crack on the distribution of stress in a long circular cylinder. Int. J. Eng. Sci. 1, 391–409 (1963)

    Article  MathSciNet  Google Scholar 

  26. Uyaner, M., Akdemir, A., Erim, S., Avci, A.: Plastic zones in a transversely isotropic solid cylinder containing a ring-shaped crack. Int. J. Fract. 106, 161–175 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Supports from the National Natural Science Foundation of China (Grant Nos. 10772123, 11072160, 11572358), the Training Program for Leading Talent in Hebei Province (A2017010004), and the Youth Fund of Education Department of Hebei Province (QN2015093) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\(D_0\) and \(B_0\) appearing in Eq. (11) are, respectively,

$$\begin{aligned} D_0= & {} \frac{2c_{13} e_{31} -e_{33} (c_{11} +c_{12} )}{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}\sigma _0 +\left[ {\frac{4c_{13} e_{31} e_{33} -(c_{11} +c_{12} )e_{33}^2 -2c_{33} e_{31}^2 }{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}+\varepsilon _{33} } \right] E_0 \nonumber \\&+\left\{ {\frac{2e_{31} (c_{13} f_{33} -c_{33} f_{31} )+e_{33} \left[ {2c_{13} f_{31} -f_{33} \left( {c_{11} +c_{12} } \right) } \right] }{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}+g_{33} } \right\} H_0 \end{aligned}$$
(A-1)
$$\begin{aligned} B_0= & {} \frac{2h_{13} e_{31} -h_{33} (c_{11} +c_{12} )}{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}\sigma _0 +\left\{ {\frac{2f_{31} \left( {c_{13} e_{33} -c_{33} e_{31} } \right) +f_{33} \left[ {2c_{13} e_{31} -(c_{11} +c_{12} )e_{33} } \right] }{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}+g_{33} } \right\} E_0 \nonumber \\&+\left[ {\frac{4c_{13} f_{31} f_{33} -2c_{33} f_{31}^2 -(c_{11} +c_{12} )f_{33}^2 }{2c_{13}^2 -c_{33} (c_{11} +c_{12} )}+\mu _{33} } \right] H_0 \end{aligned}$$
(A-2)

Appendix B

\(\varOmega _i \left( {\xi ,\alpha } \right) \;\left( {i=1,2,3,4} \right) \) in Eq. (34) are derived as

$$\begin{aligned} \left[ {\varOmega _1 \quad \varOmega _2 \quad \varOmega _3 \quad \varOmega _4 } \right] ^{\mathrm{T}}=\left[ {\Xi _{ij} } \right] ^{\mathrm {-1}}\left[ {\mathrm{X}_1 \quad \mathrm{X}_2 \quad \mathrm{X}_3 \quad \mathrm{X}_4 } \right] ^{\mathrm{T}} \end{aligned}$$
(B-1)

where

$$\begin{aligned} \Xi _{1j} \left( \xi \right)= & {} \frac{1}{s_j^2 }F_{4j} \xi I_0 \left( {\frac{\xi c}{s_j }} \right) -\frac{c_{12} -c_{11} }{c}I_1 \left( {\frac{\xi c}{s_j }} \right) \quad j=1,2,3,4 \end{aligned}$$
(B-2)
$$\begin{aligned} \Xi _{ij} \left( \xi \right)= & {} \frac{1}{s_j^2 }G_{\left( {i-1} \right) j} \xi I_1 \left( {\frac{\xi c}{s_j }} \right) \quad \quad i=2,3,4,\quad j=1,2,3,4 \end{aligned}$$
(B-3)
$$\begin{aligned} \mathrm{X}_1 \left( {\xi ,\alpha } \right)= & {} \sum _{k=1}^4 {\left[ {\frac{c_{11} -c_{12} }{s_k c}K_1 \left( {\frac{c}{s_k }\xi } \right) -\frac{F_{4k} }{s_k^2 }\xi K_0 \left( {\frac{c}{s_k }\xi } \right) } \right] \sinh \left( {\frac{\alpha }{s_k }\xi } \right) } \end{aligned}$$
(B-4)
$$\begin{aligned} \mathrm{X}_j \left( {\xi ,\alpha } \right)= & {} \sum _{k=1}^4 {\frac{1}{s_k^2 }G_{\left( {j-1} \right) k} \sinh \left( {\frac{\alpha }{s_k }\xi } \right) K_1 \left( {\frac{c}{s_k }\xi } \right) } \quad j=2,3,4 \end{aligned}$$
(B-5)

with \(K_0 (\cdot )\) and \(K_1 (\cdot )\) being, respectively, the modified Bessel functions of the second kind of order zero and order one, and \(I_1 (\cdot )\) being the modified Bessel function of the first kind of order one.

Appendix C

\(\Theta _i \left( {\xi _1 } \right) \;\left( {i=1,2,3,4} \right) \) in Eq. (43a) are derived as

$$\begin{aligned} \left[ {\Theta _1 \quad \Theta _2 \quad \Theta _3 \quad \Theta _4 } \right] ^{\mathrm{T}}=\left[ {\Sigma _{ij} } \right] ^{\mathrm {-1}}\left[ {\Lambda _1 \quad \Lambda _2 \quad \Lambda _3 \quad \Lambda _4 } \right] ^{\mathrm{T}} \end{aligned}$$
(C-1)

where

$$\begin{aligned} \Sigma _{1j} \left( {\xi _1 } \right)= & {} \frac{1}{s_j^2 }F_{4j} \frac{\xi _1 }{c}I_0 \left( {\frac{\xi _1 }{s_j }} \right) -\frac{c_{12} -c_{11} }{c}I_1 \left( {\frac{\xi _1 }{s_j }} \right) \quad j=1,2,3,4 \end{aligned}$$
(C-2)
$$\begin{aligned} \Sigma _{ij} \left( {\xi _1 } \right)= & {} \frac{1}{s_j^2 }G_{\left( {i-1} \right) j} \frac{\xi _1 }{c}I_1 \left( {\frac{\xi _1 }{s_j }} \right) \quad \quad i=2,3,4,\quad j=1,2,3,4 \end{aligned}$$
(C-3)
$$\begin{aligned} \Lambda _1 \left( {\xi _1 } \right)= & {} \sum _{k=1}^4 {\left[ {\frac{c_{11} -c_{12} }{s_k c}K_1 \left( {\frac{\xi _1 }{s_k }} \right) -\frac{F_{4k} }{s_k^2 }\frac{\xi _1 }{c}K_0 \left( {\frac{\xi _1 }{s_k }} \right) } \right] } \end{aligned}$$
(C-4)
$$\begin{aligned} \Lambda _j \left( {\xi _1 } \right)= & {} \sum _{k=1}^4 {\frac{1}{s_k^2 }G_{\left( {j-1} \right) k} K_1 \left( {\frac{\xi _1 }{s_k }} \right) } \quad j=2,3,4 \end{aligned}$$
(C-5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L.L., Feng, W.J. Dugdale plastic zone model of a penny-shaped crack in a magnetoelectroelastic cylinder under magnetoelectroelastic loads. Arch Appl Mech 89, 291–305 (2019). https://doi.org/10.1007/s00419-018-1467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1467-6

Keywords

Navigation