Skip to main content
Log in

Experimental investigation and numerical simulations of U-notch specimens under mixed mode loading by the conventional and extended finite element methods

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In brittle or quasi-brittle materials, mechanical fracture phenomenon occurs suddenly and without any warning. Therefore, prediction of brittle materials failure is an essential challenge confronting design engineers. In this research, using the conventional finite element method (CFEM) and extended finite element method (XFEM) based on linear elastic fracture mechanics, rupture behavior of U-notch specimens under mixed mode loadings are numerically and practically studied. As the main contribution and objective of the current study, two different fracture criteria established on CFEM and six various criteria founded on XFEM are employed to numerically predict load carrying capacity and crack initiation angle of the U-notch samples. Also, the load carrying capacity and crack initiation angle are experimentally obtained from tensile tests of the U-notch instances under planar mixed mode loading to verify the simulation results. The empirical results are compared with the corresponding estimated values achieved by CFEM and XFEM methods which permit to assess the accuracy of the mentioned criteria in predicting the load carrying capacity and crack initiation angle of U-notch coupons subjected to mixed mode loadings, as the novelty of the investigation. The comparison shows that although both the CFEM and XFEM can properly predict the load carrying capacity and crack initiation angle, applying the XFEM in addition to reduce the computational costs and mesh sensitivity is more precise. Besides, a comparison between the XFEM results denotes that stress-based models are significantly more accurate than strain-based types in predicting the load carrying capacity and crack initiation angle of the U-notch instances under mixed mode loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APE:

Averaged percentage of errors

ASTM:

American society for testing and materials

BD:

Brazilian disk

BK:

Benzeggagh and Kenane

CFEM:

Conventional finite element method

FEM:

Finite element method

FFM:

Finite fracture mechanics

LEFM:

Linear elastic fracture mechanics

MNE:

Maximum nominal strain

MNS:

Maximum nominal stress

MPE:

Maximum principal strain

MPS:

Maximum principal stress

MSED:

Minimum strain energy density

MTS:

Maximum tangential stress

NSIF:

Notch stress intensity factor

PMMA:

Polymethylmethacrylate

QNE:

Quadratic nominal strain

QNS:

Quadratic nominal stress

SERR:

Strain energy release rate

VCCT:

Virtual crack closure technique

XFEM:

Extended finite element method

References

  1. Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47, 673–681 (1994)

    Article  Google Scholar 

  2. Gomez, F.J., Elices, M., Valiente, A.: Cracking in PMMA containing U-shaped notches. Fatigue Fract. Eng. Mater. Struct. 23, 795–803 (2000)

    Article  Google Scholar 

  3. Gomez, F.J., Elices, M.: A fracture criterion for sharp V-notched samples. Int. J. Fract. 123, 163–175 (2003)

    Article  Google Scholar 

  4. Ayatollahi, M.R., Torabi, A.R.: Brittle fracture in rounded-tip V-shaped notches. Mater. Des. 31, 60–67 (2010)

    Article  Google Scholar 

  5. Torabi, A.R.: Fracture assessment of U-notched graphite plates under tension. Int. J. Fract. 181, 285–292 (2013)

    Article  Google Scholar 

  6. Yosibash, Z., Priel, E., Leguillon, D.: A failure criterion for brittle elastic materials under mixed-mode loading. Int. J. Fract. 141, 291–312 (2006)

    Article  MATH  Google Scholar 

  7. Ayatollahi, M.R., Torabi, A.R.: Investigation of mixed mode brittle fracture in rounded-tip V-notched components. Eng. Fract. Mech. 77, 3087–3104 (2010)

    Article  Google Scholar 

  8. Ayatollahi, M.R., Torabi, A.R.: Failure assessment of notched polycrystalline graphite under tensile-shear loading. Mater. Sci. Eng. 528, 5685–5695 (2011)

    Article  Google Scholar 

  9. Torabi, A.R., Pirhadi, E.: Stress-based criteria for brittle fracture in key-hole notches under mixed mode loading. Eur. J. Mech. A/Solids 49, 1–12 (2015)

    Article  Google Scholar 

  10. Gomez, F.J., Elices, M., Berto, F., Lazzarin, P.: A generalized notch stress intensity factor for U-notched components loaded under mixed mode. Eng. Fract. Mech. 75, 4819–4833 (2008)

    Article  Google Scholar 

  11. Gomez, F.J., Elices, M., Berto, F., Lazzarin, P.: Fracture of V-notched specimens under mixed mode (I +II) loading in brittle materials. Int. J. Fract. 159, 121–135 (2009)

    Article  Google Scholar 

  12. Berto, F., Lazzarin, P., Gomez, F.J., Elices, M.: Fracture assessment of U-notches under mixed mode loading: two procedures based on the equivalent local mode I concept. Int. J. Fract. 148, 415–433 (2007)

    Article  MATH  Google Scholar 

  13. Berto, F., Lazzarin, P., Marangon, C.: Brittle fracture of U-notched graphite plates under mixed mode loading. Mater. Des. 41, 421–432 (2012)

    Article  Google Scholar 

  14. Ayatollahi, M.R., Torabi, A.R.: Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen. Int. J. Solids Struct. 47, 454–465 (2010)

    Article  MATH  Google Scholar 

  15. Zheng, X.L., Zhao, K., Yan, J.H.: Fracture and strength of notched elements of brittle material under torsion. Mater. Sci. Technol. 21, 539–545 (2005)

    Article  Google Scholar 

  16. Berto, F., Lazzarin, P., Ayatollahi, M.R.: Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading. Carbon 50, 1942–1952 (2012)

    Article  Google Scholar 

  17. Weißgraeber, P., Leguillon, D., Becker, W.: A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Arch. Appl. Mech. 86, 375–401 (2016)

    Article  Google Scholar 

  18. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  19. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 149, 131–150 (1999)

    Article  MATH  Google Scholar 

  20. Torabi, A.R., Fakoor, M., Pirhadi, E.: Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch. Eng. Fract. Mech. 111, 77–85 (2013)

    Article  Google Scholar 

  21. Sukumar, N., Houng, Z.Y., Prevost, J.H., Suo, Z.: Partition of unity enrichment for biomaterial interface cracks. Int. J. Numer. Meth. Eng. 59, 1075–1102 (2004)

    Article  MATH  Google Scholar 

  22. Sukumar, N., Prevost, J.: Modeling quasi-static crack growth with the extended finite element method part I: computer implementation. Int. J. Solids Struct. 40, 7513–7537 (2003)

    Article  MATH  Google Scholar 

  23. Wu E.M., Reuter R.C.: Crack extension in fiberglass reinforced plastics. T and M Report, University of Illinois, Champaign, vol. 275 (1965)

  24. Benzeggagh, M., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)

    Article  Google Scholar 

  25. Balzani, C., Wagner, W.: An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng. Fract. Mech. 75, 2597–2615 (2008)

    Article  Google Scholar 

  26. American Society of Testing and Materials (ASTM): ASME Manual D638-03, New York (2010)

  27. Zappalorto, M., Lazzarin, P.: In-plane and out-of-plane stress field solutions for V-notches with end holes. Int. J. Fract. 168, 167–180 (2011)

    Article  MATH  Google Scholar 

  28. Filippi, S., Lazzarin, P., Tovo, R.: Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int. J. Solids Struct. 39, 4543–4565 (2002)

    Article  MATH  Google Scholar 

  29. Torabi, A.R.: Wide range brittle fracture curves for U-notched components based on UMTS model. Eng. Solid Mech. 1, 57–68 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Haji Aboutalebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Functions used in the tangential stress formula [Eq. (23)] for rounded-tip V-shaped notches (mode I + II) [28]:

$$\begin{aligned} m_{\theta \theta }^{(\mathrm{I})}= & {} \frac{1}{(1+\lambda _1 +\chi _{b1} (1-\lambda _1 ))}\left[ {(1+\lambda _1 )\cos ((1-\lambda _1 )\theta )+\chi _{b1} (1-\lambda _1 )\cos ((1+\lambda _1 )\theta )} \right] \\ n_{\theta \theta }^{(\mathrm{I})}= & {} \frac{q}{4(q-1)(1+\lambda _1 +\chi _{b1} (1-\lambda _1 ))}\left[ {\chi _{d1} (1+\mu _1 )\cos ((1-\mu _1 )\theta )+\chi _{c1} \cos ((1+\mu _1 )\theta )} \right] \\ m_{\theta \theta }^{(\mathrm{II})}= & {} \frac{1}{(1+\lambda _2 +\chi _{b2} (1+\lambda _2 ))}\left[ {(1+\lambda _2 )\sin ((1-\lambda _2 )\theta )+\chi _{b1} (1+\lambda _2 )\sin ((1+\lambda _2 )\theta )} \right] \\ n_{\theta \theta }^{(\mathrm{II})}= & {} \frac{q}{4(\mu _2 -1)(1+\lambda _2 +\chi _{b2} (1+\lambda _1 ))}\left[ {\chi _{d2} (1+\mu _2 )\sin ((1-\mu _1 )\theta )-\chi _{c2} \sin ((1+\mu _2 )\theta )} \right] \\ \end{aligned}$$

Eigenvalues applied in the tangential stress formula [Eq. (23)] for rounded-tip V-shaped notches (mode I + II) [28]:

\(2\alpha \;(^{\circ })\)

\(\lambda _1 \)

\(\lambda _2 \)

\(\mu _1 \)

\(\mu _2 \)

0

0.5

0.5

−0.5

−0.5

30

0.5014

0.5982

−0.4561

−0.4118

60

0.5122

0.7309

−0.4057

−0.3731

90

0.5448

0.9085

−0.3449

−0.2882

120

0.6157

1.1489

−0.2678

−0.1980

135

0.6736

1.3021

−0.2198

−0.1514

Values of the parameters q, \(\chi _{b1}\), \(\chi _{b2} \), \(\chi _{c1} \), \(\chi _{c2}\), \(\chi _{d1}\), and \(\chi _{d2}\) have been reported in [28] for various notch angles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrnia, A., Haji Aboutalebi, F. Experimental investigation and numerical simulations of U-notch specimens under mixed mode loading by the conventional and extended finite element methods. Arch Appl Mech 88, 1461–1475 (2018). https://doi.org/10.1007/s00419-018-1381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1381-y

Keywords

Navigation