Complete vibrational bandgap in thin elastic metamaterial plates with periodically slot-embedded local resonators

Original
  • 75 Downloads

Abstract

This paper presents a metamaterial plate (metaplate) consisting of a periodic array of holes on a homogeneous thin plate with slot-embedded resonators. The study numerically proves that the proposed model can generate a complete vibrational bandgap in the low-frequency range. A simplified analytical model was proposed for feasibly and accurately capturing the dispersion behavior and first bandgap characteristics in the low-frequency range, which can be used for initial design and bandgap study of the metaplate. A realistic and practical unit metaplate was subsequently designed to verify the analytical model through finite element simulations. The metaplate not only generated a complete vibrational bandgap but also exhibited excellent agreement in both analytical and finite element models for predicting the bandgap characteristics. This study facilitates the design of opening and tuning bandgaps for potential applications such as low-frequency vibration isolation and stress wave mitigation.

Keywords

Elastic metamaterial plate Local resonance Complete bandgap Dispersion behavior Vibration isolation 

Notes

Acknowledgements

HH Huang acknowledges the support (Grant No. 106-2221-E-002-018-MY3) provided by the Ministry of Science and Technology (MOST), Taiwan.

References

  1. 1.
    Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000).  https://doi.org/10.1126/science.289.5485.1734 CrossRefGoogle Scholar
  2. 2.
    Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71, 014103 (2005).  https://doi.org/10.1103/PhysRevB.71.014103 CrossRefGoogle Scholar
  3. 3.
    Yao, S., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass-spring system. New J. Phys. 10, 043020 (2008).  https://doi.org/10.1088/1367-2630/10/4/043020 CrossRefGoogle Scholar
  4. 4.
    Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009).  https://doi.org/10.1016/j.ijengsci.2008.12.007 CrossRefGoogle Scholar
  5. 5.
    Yu, D., Liu, Y., Zhao, H., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler–Bernoulli beams with locally resonant structures with two degrees of freedom. Phys. Rev. B 73, 064301 (2006).  https://doi.org/10.1103/PhysRevB.73.064301 CrossRefGoogle Scholar
  6. 6.
    Yu, D., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100, 124901 (2006).  https://doi.org/10.1063/1.2400803 CrossRefGoogle Scholar
  7. 7.
    Huang, H.H., Lin, C.K., Tan, K.T.: Attenuation of transverse waves by using a metamaterial beam with lateral local resonators. Smart Mater. Struct. 25, 085027 (2016).  https://doi.org/10.1088/0964-1726/25/8/085027 CrossRefGoogle Scholar
  8. 8.
    Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 031003 (2010).  https://doi.org/10.1115/1.4000784 CrossRefGoogle Scholar
  9. 9.
    Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014).  https://doi.org/10.1016/j.ijimpeng.2013.09.003 CrossRefGoogle Scholar
  10. 10.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014).  https://doi.org/10.1016/j.jsv.2014.01.009 CrossRefGoogle Scholar
  11. 11.
    Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos. Mag. 91, 981–996 (2011).  https://doi.org/10.1080/14786435.2010.536174 CrossRefGoogle Scholar
  12. 12.
    Zhu, R., Huang, H.H., Huang, G.L., Sun, C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49, 1477–1485 (2011).  https://doi.org/10.1016/j.ijengsci.2011.04.005 CrossRefGoogle Scholar
  13. 13.
    Wu, T.T., Huang, Z.G., Tsai, T.C., Wu, T.C.: Evidence of complete band gap and resonances in a plate with periodic stubbed surface. Appl. Phys. Lett. 93, 111902 (2008).  https://doi.org/10.1063/1.2970992 CrossRefGoogle Scholar
  14. 14.
    Oudich, M., Li, Y., Assouar, B.M., Hou, Z.: A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010).  https://doi.org/10.1088/1367-2630/12/8/083049 CrossRefGoogle Scholar
  15. 15.
    Oudich, M., Senesi, M., Assouar, M.B., Ruzenne, M., Sun, J.H., Vincent, B., Hou, Z., Wu, T.T.: Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011).  https://doi.org/10.1103/PhysRevB.84.165136 CrossRefGoogle Scholar
  16. 16.
    Xiao, Y., Wen, J., Wen, X.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. J. Phys. D Appl. Phys. 45, 195401 (2012).  https://doi.org/10.1088/0022-3727/45/19/195401 CrossRefGoogle Scholar
  17. 17.
    Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375, 2863–2867 (2011).  https://doi.org/10.1016/j.physleta.2011.06.006 CrossRefGoogle Scholar
  18. 18.
    Huang, T.Y., Shen, C., Jing, Y.: Membrane-and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139(6), 3240–3250 (2016).  https://doi.org/10.1121/1.4950751 CrossRefGoogle Scholar
  19. 19.
    Ma, F., Huang, M., Wu, J.H.: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant. J. Appl. Phys. 121(1), 015102 (2017).  https://doi.org/10.1063/1.4972839 CrossRefGoogle Scholar
  20. 20.
    Bilal, O.R., Hussein, M.I.: Trampoline metamaterial: local resonance enhancement by springboards. Appl. Phys. Lett. 103(11), 111901 (2013).  https://doi.org/10.1063/1.4820796 CrossRefGoogle Scholar
  21. 21.
    Ma, J., Hou, Z., Assouar, B.M.: Opening a large full phononic band gap in thin elastic plate with resonant units. J. Appl. Phys. 115(9), 093508 (2014).  https://doi.org/10.1063/1.4867617 CrossRefGoogle Scholar
  22. 22.
    Li, Y., Chen, T., Wang, X., Xi, Y., Liang, Q.: Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial. Phys. Lett. A 379(5), 412–416 (2015).  https://doi.org/10.1016/j.physleta.2014.11.028 CrossRefGoogle Scholar
  23. 23.
    Li, Y., Zhu, L., Chen, T.: Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Ultrasonics 73, 34–42 (2017).  https://doi.org/10.1016/j.ultras.2016.08.019 CrossRefGoogle Scholar
  24. 24.
    Wang, Y.F., Wang, Y.S., Su, X.X.: Large bandgaps of two-dimensional phononic crystals with cross-like holes. J. Appl. Phys. 110, 113520 (2011).  https://doi.org/10.1063/1.3665205 CrossRefGoogle Scholar
  25. 25.
    Wang, Y.F., Wang, Y.S.: Complete bandgaps in two-dimensional phononic crystal slabs with resonators. J. Appl. Phys. 114, 043509 (2013).  https://doi.org/10.1063/1.4816273 CrossRefGoogle Scholar
  26. 26.
    Wang, Y.F., Wang, Y.S.: Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes. J. Sound Vib. 332(8), 2019–2037 (2013).  https://doi.org/10.1016/j.jsv.2012.11.031 CrossRefGoogle Scholar
  27. 27.
    Wang, Y.F., Wang, Y.S., Zhang, C.: Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: bandgap and simultaneously double negative properties. J. Acoust. Soc. Am. 139(6), 3311–3319 (2016).  https://doi.org/10.1121/1.4950766 CrossRefGoogle Scholar
  28. 28.
    Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. (2018).  https://doi.org/10.1016/j.ijsolstr.2018.01.027
  29. 29.
    Baravelli, E., Ruzzene, M.: Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562–6579 (2013).  https://doi.org/10.1016/j.jsv.2013.08.014 CrossRefGoogle Scholar
  30. 30.
    Peng, H., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014).  https://doi.org/10.1016/j.ijmecsci.2014.09.018 CrossRefGoogle Scholar
  31. 31.
    Gao, N., Wu, J.H., Yu, L.: Research on bandgaps in two-dimensional phononic crystal with two resonators. Ultrasonics 56, 287–293 (2015).  https://doi.org/10.1016/j.ultras.2014.08.006 CrossRefGoogle Scholar
  32. 32.
    Li, Y., Chen, T., Wang, X., Yu, K., Song, R.: Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot. Phys. B 456, 261–266 (2015).  https://doi.org/10.1016/j.physb.2014.08.035 CrossRefGoogle Scholar
  33. 33.
    Frandsen, N.M.M., Bilal, O.R., Jensen, J.S., Hussein, M.I.: Inertial amplification of continuous structures: large band gaps from small masses. J. Appl. Phys. 119, 124902 (2016).  https://doi.org/10.1063/1.4944429 CrossRefGoogle Scholar
  34. 34.
    Li, B., Tan, K.T.: Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial. J. Appl. Phys. 120, 075103 (2016).  https://doi.org/10.1063/1.4961209 CrossRefGoogle Scholar
  35. 35.
    Qureshi, A., Li, B., Tan, K.T.: Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials. Sci. Rep. 6, 28314 (2016).  https://doi.org/10.1038/srep28314 CrossRefGoogle Scholar
  36. 36.
    Colquitt, D.J., Colombi, A., Craster, R.V., Roux, P., Guenneau, S.R.L.: Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J. Mech. Phys. Solids 99, 379–393 (2017).  https://doi.org/10.1016/j.jmps.2016.12.004 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Love, A.E.H.: The small free vibrations and deformations of elastic shells. Philos. Trans. A Math. Phys. Eng. Sci. 179, 491–549 (1888).  https://doi.org/10.1098/rsta.1888.0016 CrossRefMATHGoogle Scholar
  38. 38.
    Osterberg, H., Cookson, J.W.: A theory of two-dimensional longitudinal and flexural vibrations in rectangular isotropic plates. J. Appl. Phys. 6, 234–246 (1935).  https://doi.org/10.1063/1.1745325 MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Science and Ocean EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations