Skip to main content
Log in

Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Locally resonant acoustic metamaterials with multi-resonators are generally regarded as a fine trend for managing the bandgaps, the different effects of relevant structural parameters on the bandgaps, which will be numerically investigated in this paper. A two-step homogenization method is extended to achieve the effective mass of multi-resonators metamaterial in the lattice system. As comparison, the dispersive wave propagation in lattice system and continuum model is studied. Then, the different effects of relevant parameters on the center frequencies and bandwidth of bandgaps are perfectly revealed, and the steady-state responses in the continuum models with purposed relevant parameters are additionally clarified. The related results can well confirm that the bandgaps exist around the undamped natural frequencies of internal resonators, and also their bandwidth can be efficiently controlled with the ensured center frequencies. Moreover, the design of purposed multi-resonators acoustic metamaterial in vibration control is presented and discussed by an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.I. Hussein, M.J. Leamy, M. Ruzzene, Appl. Mech. Rev. 66(4), 040802 (2014)

    Article  ADS  Google Scholar 

  2. Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, P. Sheng, Science 289(5485), 1734–1736 (2000)

    Article  ADS  Google Scholar 

  3. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, X. Zhang, Nat. Mater. 5(6), 452–456 (2006)

    Article  ADS  Google Scholar 

  4. Y.Q. Ding, Z.Y. Liu, C.Y. Qiu, J. Shi, Phys. Rev. Lett. 99(9), 093094 (2007)

    Article  Google Scholar 

  5. Y. Wu, Y. Lai, Z.Q. Zhang, Phys. Rev. Lett. 107(10), 105506 (2011)

    Article  ADS  Google Scholar 

  6. C.L. Ding, L. M. Hao, X.P. Zhao, J. Appl. Phys. 108(7), 074911 (2010)

    Article  ADS  Google Scholar 

  7. S. Zhai, H. Chen, C. Ding, X. Zhao, J. Phys. D Appl. Phys. 46(47), 475105 (2013)

    Article  ADS  Google Scholar 

  8. D. Torrent, A. Håkansson, F. Cervera, J. Sánchez-Dehesa, Phys. Rev. Lett. 96(20), 204302 (2006)

    Article  ADS  Google Scholar 

  9. H.H. Huang, C.T. Sun, G.L. Huang, Int. J. Eng. Sci. 47(4), 610–617 (2009)

    Article  MathSciNet  Google Scholar 

  10. Y. Liu, X. Su, C.T. Sun, J. Mech. Phys. Solids 74, 158–174 (2015)

    Article  ADS  Google Scholar 

  11. A. Climente, D. Torrent, J. Sánchez-Dehesa, Appl. Phys. Lett. 100(14), 144103 (2012)

    Article  ADS  Google Scholar 

  12. R.Q. Li, X.F. Zhu, B. Liang, Y. Li, X.Y. Zou, J.C. Cheng, Appl. Phys. Lett. 99(19), 193507 (2011)

    Article  ADS  Google Scholar 

  13. H.W. Sun, X.W. Du, P.F. Pai, J. Intell. Mater. Syst. Struct. 21(11), 1085–1101 (2010)

    Article  Google Scholar 

  14. S. Zhang, C. Xia, N. Fang, Phys. Rev. Lett. 106(2), 024301 (2011)

    Article  ADS  Google Scholar 

  15. A. Khelif, B. Djafari-Rouhani, J. Vasseur, P. Deymier, Phys. Rev. B 68(2), 024302 (2003)

    Article  ADS  Google Scholar 

  16. R. Lucklum, M. Ke, M. Zubtsov, Sens. Actuators B: Chem. 171, 271–277 (2012)

    Article  Google Scholar 

  17. M. Ruzzene, F. Scarpa, F. Soranna, Smart Mater. Struct. 12(3), 363 (2003)

    Article  ADS  Google Scholar 

  18. S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, C.K. Kim, Phys. Rev. Lett. 104(5), 054301 (2010)

    Article  ADS  Google Scholar 

  19. M. Yang, G. Ma, Z. Yang, P. Sheng, Phys. Rev. Lett. 110(13), 134301 (2013)

    Article  ADS  Google Scholar 

  20. G.L. Huang, C.T. Sun, J. Vib. Acoust. Trans. ASME 132(3), 031003 (2010)

    Article  Google Scholar 

  21. K.T. Tan, H.H. Huang, C.T. Sun, Appl. Phys. Lett. 101(24), 241902 (2012)

    Article  ADS  Google Scholar 

  22. P.F. Pai, H. Peng, S.Y. Jiang, Int. J. Mech. Sci. 79, 195–205 (2014)

    Article  Google Scholar 

  23. L. Brillouin, J. Manuf. Sci. Eng. 93(3), 65 (1946)

    Google Scholar 

  24. Y. Lai, Y. Wu, P. Sheng, Z.-Q. Zhang, Nat. Mater. 10(8), 620–624 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the National Natural Science Foundation of China (NSFC) (51375060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, J., Wang, R. et al. Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators. Appl. Phys. A 122, 427 (2016). https://doi.org/10.1007/s00339-016-9978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9978-x

Keywords

Navigation