Skip to main content
Log in

A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a modified variational method is developed to study the free and forced vibration of curved beams subjected to different boundary conditions. An arbitrary number of eccentric concentrated elements (ECEs) attached to the beams are taken into account. A modified variational principle and least-square weighted residual method are employed to impose the continuity constraints on the internal interfaces and the boundaries of the curved beam. The shear and inertial (or radial–tangential–rotational coupling) effects are incorporated into the system kinetic and potential functional using the generalized shell theory. To test the efficiency and accuracy of the present method, both free and force vibrations of the curved beams are examined under various boundary conditions including non-classical boundary conditions. Good agreement is observed between the results obtained by the present method and those from finite element program ANSYS. Corresponding curved beams with non-eccentric concentrated elements are also developed to investigate the effects of the ECEs on the vibration behaviors of the curved beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. J. Appl. Mech. ASME 36, 620–625 (1969)

    Article  Google Scholar 

  2. Huang, X., Hua, H., Wang, Y., Du, Z.: Research on wave mode conversion of curved beam structures by the wave approach. J. Vib. Acoust. 135(3), 031014 (2013)

    Article  Google Scholar 

  3. Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite-elements. J. Sound Vib. 31, 315–330 (1973)

    Article  MATH  Google Scholar 

  4. Raveendranath, P., Singh, G., Rao, G.V.: A three-noded shear-flexible curved beam element based on coupled displacement field interpolations. Int. J. Numer. Methods Eng. 51, 85–101 (2001)

    Article  MATH  Google Scholar 

  5. Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1), 86–95 (2008)

    Article  Google Scholar 

  6. Yang, F., Sedaghati, R., Esmailzadeh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318(4), 850–867 (2008)

    Article  Google Scholar 

  7. Cannarozzi, M., Molari, L.: A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int. J. Numer. Methods Eng. 74, 116–137 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Saffari, H., Tabatabaei, R., Mansouri, S.H.: Vibration analysis of circular arch element using curvature. Shock Vib. 15, 481–492 (2008)

    Article  Google Scholar 

  9. Kim, J.G., Kim, Y.Y.: A new higher-order hybrid-mixed curved beam element. Int. J. Numer. Methods Eng. 43, 925–940 (1998)

    Article  MATH  Google Scholar 

  10. Kim, J.G., Kim, Y.Y.: A higher-order hybrid-mixed harmonic shell-of-revolution element. Comput. Methods Appl. Mech. Eng. 182, 1–16 (2000)

    Article  MATH  Google Scholar 

  11. Kim, J.G., Park, Y.K.: Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int. J. Numer. Methods Eng. 68, 690–706 (2006)

    Article  MATH  Google Scholar 

  12. Kim, J.G., Lee, J.K.: Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput. Struct. 86, 1672–1681 (2008)

    Article  Google Scholar 

  13. Yang, Z., Chen, X., He, Y., He, Z., Zhang, J.: The analysis of curved beam using B-spline wavelet on interval finite element method. Shock Vib. 2014(1), 1–9 (2014)

  14. Chen, C.N.: DQEM analysis of in-plane vibration of curved beam structures. Adv. Eng. Softw. 36(6), 412–424 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, B., Riedel, C.H., Tan, C.A.: Free vibration analysis of planar curved beams by wave propagation. J. Sound Vib. 260(1), 19–44 (2003)

    Article  Google Scholar 

  16. Kang, B., Riedel, C.H.: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes. Wave Motion 49(1), 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lei, Z., Su, J., Hua, H.: Longitudinal and transverse coupling dynamic properties of a Timoshenko beam with mass eccentricity. Int. J. Struct. Stab. Dyn. 17(7), 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  18. Su, J., Lei, Z., Hua, H.: Axial-bending coupling vibration of mass eccentric double-beam system with discrete elastic connections. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 231(2), 555–568 (2017)

    Google Scholar 

  19. Wu, J.S., Lin, F.T., Shaw, H.J.: Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl. Math. Model. 37(14), 7588–7610 (2013)

    Article  MathSciNet  Google Scholar 

  20. Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Appl. Acoust. 74(3), 425–439 (2013)

    Article  Google Scholar 

  21. Kim, J.G., Lee, J.K., Yoon, H.J.: On the effect of shear coefficients in free vibration analysis of curved beams. J. Mech. Sci. Technol. 28(8), 3181–3187 (2014)

    Article  Google Scholar 

  22. Dupire, G., Boufflet, J.P., Dambrine, M., Villon, P.: On the necessity of Nitsche term. Appl. Numer. Math. 60(9), 888–902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeffery, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals, 4th edn. Academic Press, Millbrae (2008)

    Google Scholar 

  24. Fu, Z., Hua, H.: Modal Analysis Theory and Application. Shanghai Jiao Tong University Press, Shanghai (2000)

    Google Scholar 

  25. Chen, X., Liu, Y.: Finite Element Modeling and Simulation with ANSYS Workbench. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinpeng Su.

Appendices

Appendix A. Disjoint generalized mass and stiffness matrices of a curved beam

The generalized mass and stiffness matrices of a curved beam in Eq. (16) are, respectively, organized as

$$\begin{aligned} \mathbf{M}= & {} \hbox {diag}\left[ {\mathbf{M}_{\mathrm{1}} ,\mathbf{M}_2 ,\ldots ,\mathbf{M}_{N_\mathrm{b} } } \right] \end{aligned}$$
(A.1)
$$\begin{aligned} \mathbf{K}= & {} \hbox {diag}\left[ {\mathbf{K}_{\mathrm{1}} ,\mathbf{K}_2 ,\ldots ,\mathbf{K}_{N_\mathrm{b} } } \right] \end{aligned}$$
(A.2)

where M\(_{i}\) and K\(_{i}\) are the mass and stiffness matrices of the ith beam segment, respectively, and can be given by

$$\begin{aligned} \mathbf{M}_i= & {} \int _{\theta _i } {\left[ {{\begin{array}{ccc} {\mathbf{M}_{uu}^i }&{}\quad \mathbf{0}&{}\quad \mathbf{0} \\ \mathbf{0}&{}\quad {\mathbf{M}_{ww}^i }&{}\quad \mathbf{0} \\ \mathbf{0}&{}\quad \mathbf{0}&{}\quad {\mathbf{M}_{\varphi \varphi }^i } \\ \end{array} }} \right] R\mathrm{d}\theta } \end{aligned}$$
(A.3)
$$\begin{aligned} \mathbf{K}_i= & {} \int _{\theta _i } {\left[ {{\begin{array}{ccc} {\mathbf{K}_{uu}^i }&{}\quad {\mathbf{K}_{uw}^i }&{}\quad {\mathbf{K}_{u\varphi }^i } \\ {\mathbf{K}_{uw}^{i,T} }&{}\quad {\mathbf{K}_{ww}^i }&{}\quad {\mathbf{K}_{w\varphi }^i } \\ {\mathbf{K}_{u\varphi }^{i,T} }&{}\quad {\mathbf{K}_{w\varphi }^{i,T} }&{}\quad {\mathbf{K}_{\varphi \varphi }^i } \\ \end{array} }} \right] \mathrm{d}\theta } \end{aligned}$$
(A.4)

The elements of the mass matrices are:

$$\begin{aligned} \mathbf{M}_{uu}^i= & {} \rho A\mathbf{U}_i^\mathrm{T} \mathbf{U}_i , \end{aligned}$$
(A.5a)
$$\begin{aligned} \mathbf{M}_{ww}^i= & {} \rho A\mathbf{W}_i^\mathrm{T} \mathbf{W}_i , \end{aligned}$$
(A.5b)
$$\begin{aligned} \mathbf{M}_{\varphi \varphi }^i= & {} \rho I\varvec{\Phi }_i^\mathrm{T} \varvec{\Phi }_i \end{aligned}$$
(A.5c)

The elements of the stiffness matrices are:

$$\begin{aligned} \mathbf{K}_{uu}^i= & {} \frac{EA}{R}\frac{\partial \mathbf{U}_i^\mathrm{T} }{\partial \theta }\frac{\partial \mathbf{U}_i }{\partial \theta }+\frac{\kappa GA}{R}{} \mathbf{U}_i^\mathrm{T} \mathbf{U}_i \end{aligned}$$
(A.6a)
$$\begin{aligned} \mathbf{K}_{uw}^i= & {} \frac{\kappa GA}{R}{} \mathbf{U}_i^\mathrm{T} \frac{\partial \mathbf{W}_i }{\partial \theta }-\frac{EA}{R}\frac{\partial \mathbf{U}_i^\mathrm{T} }{\partial \theta }\mathbf{W}_i \end{aligned}$$
(A.6b)
$$\begin{aligned} \mathbf{K}_{u\varphi }^i= & {} -\kappa GA\mathbf{U}_i^\mathrm{T} \varvec{\Phi }_i \end{aligned}$$
(A.6c)
$$\begin{aligned} \mathbf{K}_{ww}^i= & {} \frac{\kappa GA}{R}\frac{\partial \mathbf{W}_i^\mathrm{T} }{\partial \theta }\frac{\partial \mathbf{W}_i }{\partial \theta }+\frac{EA}{R}{} \mathbf{W}_i^\mathrm{T} \mathbf{W}_i \end{aligned}$$
(A.6d)
$$\begin{aligned} \mathbf{K}_{w\varphi }^i= & {} -\kappa GA\frac{\partial \mathbf{W}_i^\mathrm{T} }{\partial \theta }\varvec{\Phi }_i \end{aligned}$$
(A.6e)
$$\begin{aligned} \mathbf{K}_{\varphi \varphi }^i= & {} \frac{EI}{R}\frac{\partial \varvec{\Phi }_i^\mathrm{T} }{\partial \theta }\frac{\partial \varvec{\Phi }_i }{\partial \theta }+\kappa GAR\varvec{\Phi }_i^\mathrm{T} \varvec{\Phi }_i \end{aligned}$$
(A.6f)

Appendix B. Generalized interface stiffness matrices \(\hbox {K}_\lambda \) and \(\hbox {K}_\kappa \)

According to the organization of the elements in the generalized displacement vector, assembling all interface matrices leads to the generalized interface matrices \(\mathbf{K}_\lambda \) and \(\mathbf{K}_\kappa \). The interface matrix \(\mathbf{K}_\lambda ^{i} \) of the curved beam at the interface located at \(\theta \)=\(\theta \)\(_{i}\) is given by

$$\begin{aligned} \mathbf{K}_\lambda ^i =\left[ {{\begin{array}{llllll} {\mathbf{K}_{u_i u_i }} &{}\quad {\mathbf{K}_{u_i w_i }} &{}\quad {\mathbf{K}_{u_i \varphi _i }} &{}\quad {\mathbf{K}_{u_i u_{i+1} }} &{}\quad {\mathbf{K}_{u_i w_{i+1} }} &{}\quad {\mathbf{K}_{u_i \varphi _{i+1} } } \\ {\mathbf{K}_{u_i w_i }^\mathrm{T} } &{}\quad {\mathbf{K}_{w_i w_i }} &{}\quad {\mathbf{K}_{w_i \varphi _i }} &{}\quad {\mathbf{K}_{w_i u_{i+1} }} &{}\quad {\mathbf{K}_{w_i w_{i+1} }} &{}\quad {\mathbf{K}_{w_i \varphi _{i+1} } } \\ {\mathbf{K}_{u_i \varphi _i }^\mathrm{T} } &{}\quad {\mathbf{K}_{w_i \varphi _i }^\mathrm{T} } &{}\quad {\mathbf{K}_{\varphi _i \varphi _i }} &{}\quad {\mathbf{K}_{\varphi _i u_{i+1} }} &{}\quad {\mathbf{K}_{\varphi _i w_{i+1} }} &{}\quad {\mathbf{K}_{\varphi _i \varphi _{i+1} }} \\ {\mathbf{K}_{u_i u_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{u_i w_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{u_i \varphi _{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ {\mathbf{K}_{w_i u_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{w_i w_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{w_i \varphi _{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ {\mathbf{K}_{\varphi _i u_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{\varphi _i w_{i+1} }^\mathrm{T} } &{}\quad {\mathbf{K}_{\varphi _i \varphi _{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ \end{array} }} \right] \end{aligned}$$
(B.1)

The detailed elements of the interface matrix \(\mathbf{K}_\lambda ^i \) are:

$$\begin{aligned} \mathbf{K}_{u_i u_i }= & {} \varsigma _u \frac{EA}{R}\left( {\frac{\partial \mathbf{U}_i^\mathrm{T} }{\partial \theta }{} \mathbf{U}_i +\mathbf{U}_i^\mathrm{T} \frac{\partial \mathbf{U}_i }{\partial \theta }} \right) \end{aligned}$$
(B.2a)
$$\begin{aligned} \mathbf{K}_{u_i w_i }= & {} \left( {\frac{\varsigma _w \kappa GA}{R}-\frac{\varsigma _u EA}{R}} \right) \mathbf{U}_i^\mathrm{T} \mathbf{W}_i \end{aligned}$$
(B.2b)
$$\begin{aligned} \mathbf{K}_{u_i \varphi _i }= & {} \mathbf{0} \end{aligned}$$
(B.2c)
$$\begin{aligned} \mathbf{K}_{u_i u_{i+1} }= & {} -\frac{\varsigma _u EA}{R}\frac{\partial \mathbf{U}_i^\mathrm{T} }{\partial \theta }{} \mathbf{U}_{i+1} \end{aligned}$$
(B.2d)
$$\begin{aligned} \mathbf{K}_{u_i w_{i+1} }= & {} -\frac{\varsigma _w \kappa GA}{R}{} \mathbf{U}_i^\mathrm{T} \mathbf{W}_{i+1} \end{aligned}$$
(B.2e)
$$\begin{aligned} \mathbf{K}_{u_i \varphi _{i+1} }= & {} \mathbf{0} \end{aligned}$$
(B.2f)
$$\begin{aligned} \mathbf{K}_{w_i w_i }= & {} \frac{\varsigma _w \kappa GA}{R}\left( {\frac{\partial \mathbf{W}_i^\mathrm{T} }{\partial \theta }{} \mathbf{W}_i +\mathbf{W}_i^\mathrm{T} \frac{\partial \mathbf{W}_i }{\partial \theta }} \right) \end{aligned}$$
(B.2g)
$$\begin{aligned} \mathbf{K}_{w_i \varphi _i }= & {} -\varsigma _w \kappa GA\mathbf{W}_i^\mathrm{T} \varvec{\Phi }_i \end{aligned}$$
(B.2h)
$$\begin{aligned} \mathbf{K}_{w_i u_{i+1} }= & {} -\frac{\varsigma _u EA}{R}\mathbf{W}_i^\mathrm{T} \mathbf{U}_{i+1} \end{aligned}$$
(B.2i)
$$\begin{aligned} \mathbf{K}_{w_i w_{i+1} }= & {} -\varsigma _w \frac{\kappa GA}{R}\frac{\partial \mathbf{W}_i^\mathrm{T} }{\partial \theta }{} \mathbf{W}_{i+1} \end{aligned}$$
(B.2j)
$$\begin{aligned} \mathbf{K}_{w_i \varphi _{i+1} }= & {} \mathbf{0} \end{aligned}$$
(B.2k)
$$\begin{aligned} \mathbf{K}_{\varphi _i \varphi _i }= & {} \frac{\varsigma _\varphi EI}{R}\left( {\frac{\partial \varvec{\Phi }_i^\mathrm{T} }{\partial \theta }\varvec{\Phi }_i +\varvec{\Phi }_i^\mathrm{T} \frac{\partial \varvec{\Phi }_i }{\partial \theta }} \right) \end{aligned}$$
(B.2l)
$$\begin{aligned} \mathbf{K}_{\varphi _i u_{i+1} }= & {} \mathbf{0} \end{aligned}$$
(B.2m)
$$\begin{aligned} \mathbf{K}_{\varphi _i w_{i+1} }= & {} \varsigma _w \kappa GA\varvec{\Phi }_i^\mathrm{T} \mathbf{W}_{i+1} \end{aligned}$$
(B.2n)
$$\begin{aligned} \mathbf{K}_{\varphi _i \varphi _{i+1} }= & {} -\frac{\varsigma _\varphi EI}{R}\frac{\partial \varvec{\Phi }_i^\mathrm{T} }{\partial \theta }\varvec{\Phi }_{i+1} \end{aligned}$$
(B.2o)

The generalized matrix \(\mathbf{K}_\kappa ^i \) due to the least-squares weighted terms at the interface located at \(\theta =\theta _{i}\) is given below

$$\begin{aligned} \mathbf{K}_\kappa ^i =\left[ {{\begin{array}{cccccc} {{\bar{\mathbf{K}}}_{u_i u_i }} &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{u_i u_{i+1} }} &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{w_i w_i }} &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{w_i w_{i+1} }} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{\varphi _i \varphi _i }} &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{\varphi _i \varphi _{i+1} }} \\ {{\bar{\mathbf{K}}}_{u_i u_{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{u_{i+1} u_{i+1} }} &{}\quad \mathbf{0} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{w_i w_{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{w_{i+1} w_{i+1} }} &{}\quad \mathbf{0} \\ \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{\varphi _i \varphi _{i+1} }^\mathrm{T} } &{}\quad \mathbf{0} &{}\quad \mathbf{0} &{}\quad {{\bar{\mathbf{K}}}_{\varphi _{i+1} \varphi _{i+1} }} \\ \end{array} }} \right] \end{aligned}$$
(B.3)

where the detailed elements are obtained by

$$\begin{aligned} {\bar{\mathbf{K}}}_{u_i u_i }= & {} \varsigma _u \kappa _u \mathbf{U}_i^\mathrm{T} \mathbf{U}_i , \end{aligned}$$
(B.4a)
$$\begin{aligned} {\bar{\mathbf{K}}}_{u_i u_{i+1} }= & {} -\varsigma _u \kappa _u \mathbf{U}_i^\mathrm{T} \mathbf{U}_{i+1} \end{aligned}$$
(B.4b)
$$\begin{aligned} {\bar{\mathbf{K}}}_{w_i w_i }= & {} \varsigma _w \kappa _w \mathbf{W}_i^\mathrm{T} \mathbf{W}_i , \end{aligned}$$
(B.4c)
$$\begin{aligned} {\bar{\mathbf{K}}}_{w_i w_{i+1} }= & {} -\varsigma _w \kappa _w \mathbf{W}_i^\mathrm{T} \mathbf{W}_{i+1} \end{aligned}$$
(B.4d)
$$\begin{aligned} {\bar{\mathbf{K}}}_{\varphi _i \varphi _i }= & {} \varsigma _\varphi \kappa _\varphi \varvec{\Phi }_i^\mathrm{T} \varvec{\Phi }_i , \end{aligned}$$
(B.4e)
$$\begin{aligned} \mathbf{K}_{\varphi _i \varphi _{i+1} }= & {} -\varsigma _\varphi \kappa _\varphi \varvec{\Phi }_i^\mathrm{T} \varvec{\Phi }_{i+1} \end{aligned}$$
(B.4f)

Appendix C. Generalized mass and stiffness matrices of ECEs

Assuming that there are \(N_{r}\) ECEs on the rth beam segment, and then the generalized mass matrix\(\mathbf{M}_c^r \) introduced by the ECEs for the rth beam segment can be written as

$$\begin{aligned} \mathbf{M}_c^r =\left[ {{\begin{array}{ccc} {{\bar{\mathbf{M}}}_{uu}^r }&{}\quad \mathbf{0}&{}\quad {{\bar{\mathbf{M}}}_{u\varphi }^r } \\ \mathbf{0}&{}\quad {{\bar{\mathbf{M}}}_{ww}^r }&{}\quad \mathbf{0} \\ {{\bar{\mathbf{M}}}_{u\varphi }^{r,T} }&{}\quad \mathbf{0}&{}\quad {{\bar{\mathbf{M}}}_{\varphi \varphi }^r } \\ \end{array} }} \right] \end{aligned}$$
(C.1)

The elements in the mass matrix are:

$$\begin{aligned} {\bar{\mathbf{M}}}_{uu}^r= & {} \sum _{m=1}^{N_r } {\left( {m_r^m \mathbf{U}_r^\mathrm{T} (\theta _r^m )\mathbf{U}_r (\theta _r^m )} \right) } , \end{aligned}$$
(C.2a)
$$\begin{aligned} {\bar{\mathbf{M}}}_{u\varphi }^r= & {} \sum _{m=1}^{N_r } {\left( {e_r^m m_r^m \mathbf{U}_r^\mathrm{T} (\theta _r^m )\varvec{\Phi }_r (\theta _r^m )} \right) } \end{aligned}$$
(C.2b)
$$\begin{aligned} {\bar{\mathbf{M}}}_{ww}^r= & {} \sum _{m=1}^{N_r } {\left( {m_r^m \mathbf{W}_r^\mathrm{T} (\theta _r^m )\mathbf{W}_r (\theta _r^m )} \right) } , \end{aligned}$$
(C.2c)
$$\begin{aligned} {\bar{\mathbf{M}}}_{\varphi \varphi }^r= & {} \sum _{m=1}^{N_r } {\left( {\left( {J_r^m +m_r^m (e_r^m )^{2}} \right) \varvec{\Phi }_r^\mathrm{T} (\theta _r^m )\varvec{\Phi }_r (\theta _r^m )} \right) } \end{aligned}$$
(C.2d)

In the same way, the stiffness matrix \(\mathbf{K}_c^r \) introduced by the ECEs for the rth beam segment can be written as

$$\begin{aligned} \mathbf{K}_c^r =\left[ {{\begin{array}{ccc} {{\bar{\mathbf{K}}}_{uu}^r }&{}\quad \mathbf{0}&{}\quad {{\bar{\mathbf{K}}}_{u\varphi }^r } \\ \mathbf{0}&{}\quad {{\bar{\mathbf{K}}}_{ww}^r }&{}\quad \mathbf{0} \\ {{\bar{\mathbf{K}}}_{u\varphi }^{r,T} }&{}\quad \mathbf{0}&{}\quad {{\bar{\mathbf{K}}}_{\varphi \varphi }^r } \\ \end{array} }} \right] \end{aligned}$$
(C.3)

The elements in the stiffness matrix are given below

$$\begin{aligned} {\bar{\mathbf{K}}}_{uu}^r= & {} \sum _{m=1}^{N_r } {\left( {k_{u,r}^m \mathbf{U}_r^\mathrm{T} (\theta _r^m )\mathbf{U}_r (\theta _r^m )} \right) } , \end{aligned}$$
(C.4a)
$$\begin{aligned} {\bar{\mathbf{K}}}_{u\varphi }^r= & {} \sum _{m=1}^{N_r } {\left( {e_r^m k_{u,r}^m \mathbf{U}_r^\mathrm{T} (\theta _r^m )\varvec{\Phi }_r (\theta _r^m )} \right) } \end{aligned}$$
(C.4b)
$$\begin{aligned} {\bar{\mathbf{K}}}_{ww}^r= & {} \sum _{m=1}^{N_r } {\left( {k_{w,r}^m \mathbf{W}_r^\mathrm{T} (\theta _r^m )\mathbf{W}_r (\theta _r^m )} \right) } , \end{aligned}$$
(C.4c)
$$\begin{aligned} {\bar{\mathbf{K}}}_{\varphi \varphi }^r= & {} \sum _{m=1}^{N_r } {\left( {\left( {k_{\varphi ,r}^m +k_{u,r}^m (e_r^m )^{2}} \right) \varvec{\Phi }_r^\mathrm{T} (\theta _r^m )\varvec{\Phi }_r (\theta _r^m )} \right) } \end{aligned}$$
(C.4d)

whereby, the generalized mass and stiffness matrices deduced by the ECEs in Eq. (16) can be obtained, respectively, as:

$$\begin{aligned} \mathbf{M}_c= & {} \hbox {diag}\left[ {\mathbf{M}_c^1 ,\mathbf{M}_c^2 ,\ldots ,\mathbf{M}_c^{N_\mathrm{b} } } \right] , \end{aligned}$$
(C.5a)
$$\begin{aligned} \mathbf{K}_c= & {} \hbox {diag}\left[ {\mathbf{K}_c^1 ,\mathbf{K}_c^2 ,\ldots ,\mathbf{K}_c^{N_\mathrm{b} } } \right] \end{aligned}$$
(C.5b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhou, K., Qu, Y. et al. A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Arch Appl Mech 88, 1089–1104 (2018). https://doi.org/10.1007/s00419-018-1360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1360-3

Keywords

Navigation