Advertisement

Archive of Applied Mechanics

, Volume 88, Issue 7, pp 1075–1087 | Cite as

Structural damage localization from energy density measurements using an energetic approach

  • A. Samet
  • M. A. Ben Souf
  • O. Bareille
  • M. N. Ichchou
  • T. Fakhfakh
  • M. Haddar
Original
  • 77 Downloads

Abstract

This paper presents a new damage detection strategy for structures, capable of identifying the defects from a set of energy density measurements, at medium and high frequencies. An inverse energetic approach, also called the inverse simplified energy method (IMES), is used for this purpose. It was first developed for the localization and the quantification of vibro-acoustic sources. The main novelty of this paper is to extend this inverse approach to the field of defects detection, to localize the flaw through the knowledge of the energy density field within the structure. A new numerical methodology is proposed in this paper for this purpose. Numerical simulations with different defect cases were performed to validate the presented method. Results show that IMES is an effective predictive tool in structural damage detection.

Keywords

Damage detection Inverse simplified energy method Inverse problems Medium and high frequencies 

References

  1. 1.
    Zhu, X., Rizzo, P.: A unified approach for the structural health monitoring of waveguides. Struct. Health Monit. 11, 629–642 (2012)CrossRefGoogle Scholar
  2. 2.
    Angelis, D.G., Barkoula, N.M., Matikas, T.E., Paipetis, A.S.: Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72, 1127–1133 (2012)CrossRefGoogle Scholar
  3. 3.
    Kessler, S.S., Spearing, S.M., Soutis, C.: Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11, 269 (2002)CrossRefGoogle Scholar
  4. 4.
    Hu, H., Wu, C.: Development of scanning damage index for the damage detection of plate structures using modal strain energy method. Mech. Syst. Signal Process. 23, 274–287 (2009)CrossRefGoogle Scholar
  5. 5.
    Nicknam, A., Hosseini, M.H.: Structural damage localization and evaluation based on modal data via a new evolutionary algorithm. Arch. Appl. Mech. 82, 191–203 (2012)CrossRefMATHGoogle Scholar
  6. 6.
    Hearn, G., Testa, R.B.: Modal analysis for damage detection in structures. J. Struct. Eng. 117, 3042–3063 (1991)CrossRefGoogle Scholar
  7. 7.
    Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10, 83–111 (2011)CrossRefGoogle Scholar
  8. 8.
    Raghavan, A., Cesnik, C.E.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39, 91–116 (2007)CrossRefGoogle Scholar
  9. 9.
    Friswell, M.I.: Damage identification using inverse methods. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 365, 393–410 (2007)CrossRefGoogle Scholar
  10. 10.
    Amini, F., Shahidzadeh, M.S.: Damage detection using a new regularization method with variable parameter. Arch. Appl. Mech. 80, 255–269 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Navabian, N., Bozorgnasab, M., Taghipour, R., Yazdanpanah, O.: Damage identification in plate-like structure using mode shape derivatives. Arch. Appl. Mech. 86, 819–830 (2016)CrossRefGoogle Scholar
  12. 12.
    Moore, E.Z., Murphy, K.D., Nichols, J.M.: Crack identification in a freely vibrating plate using Bayesian parameter estimation. Mech. Syst. Signal Process. 25, 2125–2134 (2011)CrossRefGoogle Scholar
  13. 13.
    Hu, H.W., Wu, C.B.: Nondestructive damage detection of two dimensional plate structures using modal strain energy method. J. Mech. 24, 319–332 (2008)CrossRefGoogle Scholar
  14. 14.
    Teughels, A., De Roeck, G.: Damage detection and parameter identification by finite element model updating. Revue européenne de génie civil 9, 109–158 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Kim, J.T., Ryu, Y.S., Cho, H.M., Stubbs, N.: Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Eng. Struct. 25, 57–67 (2003)CrossRefGoogle Scholar
  16. 16.
    Stavroulakis, G.E., Antes, H.: Flaw identification in elastomechanics: BEM simulation with local and genetic optimization. Struct. Optim. 16, 162–175 (1998)CrossRefGoogle Scholar
  17. 17.
    Rus, G., Lee, S.Y., Gallego, R.: Defect identification in laminated composite structures by BEM from incomplete static data. Int. J. Solids Struct. 42, 1743–1758 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Salehi, M., Ziaei-Rad, S., Ghayour, M., Vaziri-Zanjani, M.A.: A frequency response based structural damage localization method using proper orthogonal decomposition. J. Mech. 27, 157–166 (2011)CrossRefGoogle Scholar
  19. 19.
    Zang, C., Imregun, M.: Combined neural network and reduced FRF techniques for slight damage detection using measured response data. Arch. Appl. Mech. 71, 525–536 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Rucka, M.: Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Arch. Appl. Mech. 81, 1877–1888 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Rucka, M.: Experimental and numerical studies of guided wave damage detection in bars with structural discontinuities. Arch. Appl. Mech. 80, 1371–1390 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Xu, Y.G., Liu, G.R.: Detection of flaws in composites from scattered elastic-wave field using an improved \(\mu \)GA and a local optimizer. Comput. Methods Appl. Mech. Eng. 191, 3929–3946 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Yan, G., Sun, H., Waisman, H.: A guided Bayesian inference approach for detection of multiple flaws in structures using the extended finite element method. Comput. Struct. 152, 27–44 (2015)CrossRefGoogle Scholar
  24. 24.
    Chaabene, S., Bouchoucha, F., Kharrat, M., Ichchou, M.N., Haddar, M.: Prediction of Flaws in Pipes Using Wave Finite Element Method, In Design and Modeling of Mechanical Systems-II, pp. 661–671. Springer, Berlin (2015)Google Scholar
  25. 25.
    Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 1: defect identification. Int. J. Appl. Mech. 6, 1450034 (2014)CrossRefGoogle Scholar
  26. 26.
    Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 2: defect sizing by the wave finite element method. Int. J. Appl. Mech. 6, 1450035 (2014)CrossRefGoogle Scholar
  27. 27.
    Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Wave diffusion sensitivity to angular positions of defects in pipes. J. Comput. Acoust. 23, 1550013 (2015)CrossRefGoogle Scholar
  28. 28.
    Dobry, M.W.: Energy efficiency of passive vibroisolation in machines and devices. Vibroengineering Procedia 3, 117–123 (2014)Google Scholar
  29. 29.
    Dobry, M.W., Maciejewski, E.: Energy flow as a base of new energy approach to fatigue strength. Vib. Phys. Syst. 25, 129–134 (2012)Google Scholar
  30. 30.
    Grygorowicz, M., Dobry, M.W., Tabaszewski, M.: Energy experimental method verification dynamical model of human under whole body vibration. Vib. Phys. Syst. 24, 137–142 (2010)Google Scholar
  31. 31.
    Wojsznis, M., and Dobry, M. W.: Analysis of energy flow in a Human Being–machine system with application of energy portraits of power. Vib. Phys. Syst. 22, (2006)Google Scholar
  32. 32.
    Lyon, R.H., Dejong, R.G.: Theory and application of statistical energy analysis. Butterworth-Heineman, USA (1995)Google Scholar
  33. 33.
    Nefske, D.J., Sung, S.H.: Power flow finite element analysis of dynamic systems: basic theory and application to beams. J. Vib. Acoust. Stress, Reliab. Des. 111, 94–100 (1987)CrossRefGoogle Scholar
  34. 34.
    Wohlever, J.C., Bernhard, R.J.: Mechanical energy flow models of rods and beams. J. Sound Vib. 153, 1–19 (1992)CrossRefMATHGoogle Scholar
  35. 35.
    Bouthier, O.M., Bernhard, R.J.: Simple models of energy flow in vibrating membranes. J. Sound Vib. 182, 129–147 (1995)CrossRefGoogle Scholar
  36. 36.
    Lase, Y., Ichchou, M.N., Jezequel, L.: Energy flow analysis of bars and beams: theoretical formulations. J. Sound Vib. 192, 281–305 (1996)CrossRefGoogle Scholar
  37. 37.
    Ichchou, M.N., Jezequel, L.: Letter to the editor: comments on simple models of the energy flow in vibrating membranes and on simple models of the energetics of transversely vibrating plates. J. Sound Vib. 195, 679–685 (1996)CrossRefGoogle Scholar
  38. 38.
    Chachoub, M.A., Basset, S., Ichchou, M.N.: Structural sources identification through an inverse mid-high frequency energy method. Mech. Syst. Signal Process. 25, 2948–2961 (2011)CrossRefGoogle Scholar
  39. 39.
    Samet, A., Ben Souf, M.A., Bareille, O., Ichchou, M.N., Fakhfakh, T., Haddar, M.: Vibration sources identification in coupled thin plates through an inverse energy method. Appl. Acoust. 128, 83–93 (2017)CrossRefGoogle Scholar
  40. 40.
    Samet, A., Ben Souf, M. A., Bareille, O., Ichchou, M. N., Fakhfakh, T. and Haddar, M.: Structural Sources Localization in 2D Plate Using an Energetic Approach. In International Conference Design and Modeling of Mechanical Systems, Springer, Cham, pp. 449–458, (2017)Google Scholar
  41. 41.
    Samet, A., Ben Souf, M. A., Bareille, O., Ichchou, M. N., Fakhfakh, T. and Haddar, M.: Structural source identification from acoustic measurements using an energetic approach, J. Mech. pp. 1–11, (2017)Google Scholar
  42. 42.
    Ichchou, M.N., Jezequel, L.: Comments on simple models of the energy flow in vibrating membranes and transversely vibrating plates. J. Sound Vib. 195, 679–685 (1996)CrossRefGoogle Scholar
  43. 43.
    Besset, S., Ichchou, M., Jézéquel, L.: A coupled BEM and energy flow method for mid-high frequency internal acoustic. J. Computat. Acoust. 18, 69–85 (2010)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    L. Cremer, M. Heckl and E. E. Ungar.: Structure born-sound. Phys. Today, 28, (1975)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Samet
    • 1
    • 2
  • M. A. Ben Souf
    • 1
    • 2
  • O. Bareille
    • 2
  • M. N. Ichchou
    • 2
  • T. Fakhfakh
    • 1
  • M. Haddar
    • 1
  1. 1.Laboratoire de Mécanique, Modélisation et Productique (LA2MP), École Nationale d’Ingénieurs de SfaxUniversité de SfaxSfaxTunisie
  2. 2.Laboratoire de Tribologie et Dynamique des Systèmes (LTDS)École Centrale LyonÉcully CedexFrance

Personalised recommendations