Skip to main content

Advertisement

Log in

Structural damage localization from energy density measurements using an energetic approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a new damage detection strategy for structures, capable of identifying the defects from a set of energy density measurements, at medium and high frequencies. An inverse energetic approach, also called the inverse simplified energy method (IMES), is used for this purpose. It was first developed for the localization and the quantification of vibro-acoustic sources. The main novelty of this paper is to extend this inverse approach to the field of defects detection, to localize the flaw through the knowledge of the energy density field within the structure. A new numerical methodology is proposed in this paper for this purpose. Numerical simulations with different defect cases were performed to validate the presented method. Results show that IMES is an effective predictive tool in structural damage detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhu, X., Rizzo, P.: A unified approach for the structural health monitoring of waveguides. Struct. Health Monit. 11, 629–642 (2012)

    Article  Google Scholar 

  2. Angelis, D.G., Barkoula, N.M., Matikas, T.E., Paipetis, A.S.: Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72, 1127–1133 (2012)

    Article  Google Scholar 

  3. Kessler, S.S., Spearing, S.M., Soutis, C.: Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11, 269 (2002)

    Article  Google Scholar 

  4. Hu, H., Wu, C.: Development of scanning damage index for the damage detection of plate structures using modal strain energy method. Mech. Syst. Signal Process. 23, 274–287 (2009)

    Article  Google Scholar 

  5. Nicknam, A., Hosseini, M.H.: Structural damage localization and evaluation based on modal data via a new evolutionary algorithm. Arch. Appl. Mech. 82, 191–203 (2012)

    Article  MATH  Google Scholar 

  6. Hearn, G., Testa, R.B.: Modal analysis for damage detection in structures. J. Struct. Eng. 117, 3042–3063 (1991)

    Article  Google Scholar 

  7. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10, 83–111 (2011)

    Article  Google Scholar 

  8. Raghavan, A., Cesnik, C.E.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39, 91–116 (2007)

    Article  Google Scholar 

  9. Friswell, M.I.: Damage identification using inverse methods. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 365, 393–410 (2007)

    Article  Google Scholar 

  10. Amini, F., Shahidzadeh, M.S.: Damage detection using a new regularization method with variable parameter. Arch. Appl. Mech. 80, 255–269 (2010)

    Article  MATH  Google Scholar 

  11. Navabian, N., Bozorgnasab, M., Taghipour, R., Yazdanpanah, O.: Damage identification in plate-like structure using mode shape derivatives. Arch. Appl. Mech. 86, 819–830 (2016)

    Article  Google Scholar 

  12. Moore, E.Z., Murphy, K.D., Nichols, J.M.: Crack identification in a freely vibrating plate using Bayesian parameter estimation. Mech. Syst. Signal Process. 25, 2125–2134 (2011)

    Article  Google Scholar 

  13. Hu, H.W., Wu, C.B.: Nondestructive damage detection of two dimensional plate structures using modal strain energy method. J. Mech. 24, 319–332 (2008)

    Article  Google Scholar 

  14. Teughels, A., De Roeck, G.: Damage detection and parameter identification by finite element model updating. Revue européenne de génie civil 9, 109–158 (2005)

    Article  MATH  Google Scholar 

  15. Kim, J.T., Ryu, Y.S., Cho, H.M., Stubbs, N.: Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Eng. Struct. 25, 57–67 (2003)

    Article  Google Scholar 

  16. Stavroulakis, G.E., Antes, H.: Flaw identification in elastomechanics: BEM simulation with local and genetic optimization. Struct. Optim. 16, 162–175 (1998)

    Article  Google Scholar 

  17. Rus, G., Lee, S.Y., Gallego, R.: Defect identification in laminated composite structures by BEM from incomplete static data. Int. J. Solids Struct. 42, 1743–1758 (2005)

    Article  MATH  Google Scholar 

  18. Salehi, M., Ziaei-Rad, S., Ghayour, M., Vaziri-Zanjani, M.A.: A frequency response based structural damage localization method using proper orthogonal decomposition. J. Mech. 27, 157–166 (2011)

    Article  Google Scholar 

  19. Zang, C., Imregun, M.: Combined neural network and reduced FRF techniques for slight damage detection using measured response data. Arch. Appl. Mech. 71, 525–536 (2001)

    Article  MATH  Google Scholar 

  20. Rucka, M.: Modelling of in-plane wave propagation in a plate using spectral element method and Kane-Mindlin theory with application to damage detection. Arch. Appl. Mech. 81, 1877–1888 (2011)

    Article  MATH  Google Scholar 

  21. Rucka, M.: Experimental and numerical studies of guided wave damage detection in bars with structural discontinuities. Arch. Appl. Mech. 80, 1371–1390 (2010)

    Article  MATH  Google Scholar 

  22. Xu, Y.G., Liu, G.R.: Detection of flaws in composites from scattered elastic-wave field using an improved \(\mu \)GA and a local optimizer. Comput. Methods Appl. Mech. Eng. 191, 3929–3946 (2002)

    Article  MATH  Google Scholar 

  23. Yan, G., Sun, H., Waisman, H.: A guided Bayesian inference approach for detection of multiple flaws in structures using the extended finite element method. Comput. Struct. 152, 27–44 (2015)

    Article  Google Scholar 

  24. Chaabene, S., Bouchoucha, F., Kharrat, M., Ichchou, M.N., Haddar, M.: Prediction of Flaws in Pipes Using Wave Finite Element Method, In Design and Modeling of Mechanical Systems-II, pp. 661–671. Springer, Berlin (2015)

    Google Scholar 

  25. Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 1: defect identification. Int. J. Appl. Mech. 6, 1450034 (2014)

    Article  Google Scholar 

  26. Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Pipeline inspection using a torsional guided-waves inspection system. Part 2: defect sizing by the wave finite element method. Int. J. Appl. Mech. 6, 1450035 (2014)

    Article  Google Scholar 

  27. Kharrat, M., Ichchou, M.N., Bareille, O., Zhou, W.: Wave diffusion sensitivity to angular positions of defects in pipes. J. Comput. Acoust. 23, 1550013 (2015)

    Article  Google Scholar 

  28. Dobry, M.W.: Energy efficiency of passive vibroisolation in machines and devices. Vibroengineering Procedia 3, 117–123 (2014)

    Google Scholar 

  29. Dobry, M.W., Maciejewski, E.: Energy flow as a base of new energy approach to fatigue strength. Vib. Phys. Syst. 25, 129–134 (2012)

    Google Scholar 

  30. Grygorowicz, M., Dobry, M.W., Tabaszewski, M.: Energy experimental method verification dynamical model of human under whole body vibration. Vib. Phys. Syst. 24, 137–142 (2010)

    Google Scholar 

  31. Wojsznis, M., and Dobry, M. W.: Analysis of energy flow in a Human Being–machine system with application of energy portraits of power. Vib. Phys. Syst. 22, (2006)

  32. Lyon, R.H., Dejong, R.G.: Theory and application of statistical energy analysis. Butterworth-Heineman, USA (1995)

    Google Scholar 

  33. Nefske, D.J., Sung, S.H.: Power flow finite element analysis of dynamic systems: basic theory and application to beams. J. Vib. Acoust. Stress, Reliab. Des. 111, 94–100 (1987)

    Article  Google Scholar 

  34. Wohlever, J.C., Bernhard, R.J.: Mechanical energy flow models of rods and beams. J. Sound Vib. 153, 1–19 (1992)

    Article  MATH  Google Scholar 

  35. Bouthier, O.M., Bernhard, R.J.: Simple models of energy flow in vibrating membranes. J. Sound Vib. 182, 129–147 (1995)

    Article  Google Scholar 

  36. Lase, Y., Ichchou, M.N., Jezequel, L.: Energy flow analysis of bars and beams: theoretical formulations. J. Sound Vib. 192, 281–305 (1996)

    Article  Google Scholar 

  37. Ichchou, M.N., Jezequel, L.: Letter to the editor: comments on simple models of the energy flow in vibrating membranes and on simple models of the energetics of transversely vibrating plates. J. Sound Vib. 195, 679–685 (1996)

    Article  Google Scholar 

  38. Chachoub, M.A., Basset, S., Ichchou, M.N.: Structural sources identification through an inverse mid-high frequency energy method. Mech. Syst. Signal Process. 25, 2948–2961 (2011)

    Article  Google Scholar 

  39. Samet, A., Ben Souf, M.A., Bareille, O., Ichchou, M.N., Fakhfakh, T., Haddar, M.: Vibration sources identification in coupled thin plates through an inverse energy method. Appl. Acoust. 128, 83–93 (2017)

    Article  Google Scholar 

  40. Samet, A., Ben Souf, M. A., Bareille, O., Ichchou, M. N., Fakhfakh, T. and Haddar, M.: Structural Sources Localization in 2D Plate Using an Energetic Approach. In International Conference Design and Modeling of Mechanical Systems, Springer, Cham, pp. 449–458, (2017)

  41. Samet, A., Ben Souf, M. A., Bareille, O., Ichchou, M. N., Fakhfakh, T. and Haddar, M.: Structural source identification from acoustic measurements using an energetic approach, J. Mech. pp. 1–11, (2017)

  42. Ichchou, M.N., Jezequel, L.: Comments on simple models of the energy flow in vibrating membranes and transversely vibrating plates. J. Sound Vib. 195, 679–685 (1996)

    Article  Google Scholar 

  43. Besset, S., Ichchou, M., Jézéquel, L.: A coupled BEM and energy flow method for mid-high frequency internal acoustic. J. Computat. Acoust. 18, 69–85 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Cremer, M. Heckl and E. E. Ungar.: Structure born-sound. Phys. Today, 28, (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ben Souf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samet, A., Souf, M.A.B., Bareille, O. et al. Structural damage localization from energy density measurements using an energetic approach. Arch Appl Mech 88, 1075–1087 (2018). https://doi.org/10.1007/s00419-018-1359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1359-9

Keywords

Navigation