Skip to main content
Log in

The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper develops a size-dependent Kirchhoff microplate model with surface effects by using simplified strain gradient elasticity theory and surface elasticity theory. This new model is able to capture size-dependent behaviors and surface effects. The most noticeable difference of the proposed model from the existing plate models about microplates is that not only strain gradient and surface stress are taken into account, but also the surface-induced internal residual stresses are considered. Based on whether the plates having surface-induced internal residual stress or not, their governing equations have distinct differences. An extended Kantorovich method is employed to provide approximate closed-form solution for the rectangular microplate with simply supported boundary conditions. For the microplate with biaxial initial residual surface stress, the numerical results reflect that when the simply supported microplates do not have surface-induced internal residual stresses, internal length scale and biaxial surface residual stress have significant influence on the static bending of the microplates. However, when the simply supported microplates have nonzero surface-induced internal residual stresses, the effects of internal length scale and biaxial surface residual stress become very weak. It indicates that the effect of surface-induced internal residual stresses can counteract most of the effects of internal length scale and surface residual stress. This work provides a more general model for the analysis of microplate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee, K.K., Lim, R.R., et al.: Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model. Appl. Phys. Lett. 77, 1617 (2000)

    Article  Google Scholar 

  2. Mcfarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  3. Motz, C., Weygand, D., Senger, J., Gumbsch, P.: Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater. 56, 1942–1955 (2008)

    Article  Google Scholar 

  4. Hu, Y.Y., Qi, Q., Jiang, C.: Influence of different dielectrics on the first layer grain sizes and its effect on the mobility of pentacene-based thin-film transistors. Appl. Phys. Lett. 96, 133311 (2010)

    Article  Google Scholar 

  5. Aifantis, E.C.: Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst. Technol. 15, 109–115 (2009)

    Article  Google Scholar 

  6. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  7. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  8. Ma, H.M., Gao, X.L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  9. Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghayesh, M.H., Farokhi, H.: Nolinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)

    Article  MATH  Google Scholar 

  11. Romano, G., Barretta, R., Diaco, M.: Micromorphic continua: non-redundant formulations. Continuum Mech. Thermodyn. 28, 1659–1670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)

    Article  MATH  Google Scholar 

  13. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  14. Simsek, M.: Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50, 2112–2123 (2011)

    Article  Google Scholar 

  15. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R.: Stress-driven two-phase integral elasticity for torsion of nano-beams. Compos. Part B 145, 62–69 (2018)

    Article  Google Scholar 

  17. Lazopoulos, K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A/Solids 23, 843–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Papargyri-Beskou, S., Beskos, D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  19. Papargyri-Beskou, S., Giannakopoulos, A.E., Beskos, D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  20. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975a)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper: a continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59, 389–390 (1975b)

    Article  MATH  Google Scholar 

  22. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004)

    Article  MATH  Google Scholar 

  23. Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)

    Article  MATH  Google Scholar 

  24. Wang, K.F., Wang, B.L.: Effect of residual surface stress and surface elasticity on the nonlinear free vibration of nanoscale plates. J. Appl. Phys. 112, 013520 (2012)

    Article  Google Scholar 

  25. Wang, K.F., Wang, B.L.: Effect of surface energy on the nonlinear postbuckling behavior of nanoplates. Int. J. Non-linear Mech. 55, 19–24 (2013)

    Article  Google Scholar 

  26. Liu, C., Rajapakse, R.K.N.D.: A size-dependent continuum model for nanoscale circular plates. IEEE T. Nanotechnol. 12, 13–20 (2013)

    Article  Google Scholar 

  27. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49(12), 1294–1301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lazopoulos, K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commum. 36, 777–783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, K.F., Wang, B.L.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E 44(2), 448–453 (2011)

    Article  Google Scholar 

  31. Zhang, X., Aifantis, K.E., Senger, J., Weygand, D., Zaiser, M.: Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure? J. Mater. Res. 29(18), 2116–2128 (2014)

    Article  Google Scholar 

  32. Shaat, M., Mahmoud, F.F., Gao, X.L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014)

    Article  Google Scholar 

  33. Zhang, G.Y., Gao, X.L., Wang, J.Z.: A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effects. Acta Mech. 226, 4073–4085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shaat, M., Abdelkefi, A.: Size dependent and micromechanical modeling of strain gradient based nanoparticle composite plates with surface elasticity. Eur. J. Mech. A/Solids 58, 54–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Eremeyev, V. A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Math. Mech. Solids (2018), https://doi.org/10.1177/1081286518769960

  36. Park, H.S., Klein, P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)

    Article  MATH  Google Scholar 

  37. Yun, G., Park, H.S.: Surface stress effects on the bending properties of fcc metal nanowires. Phys. Rev. B 79, 195421 (2009)

    Article  Google Scholar 

  38. Song, F., Huang, G.L., Park, H.S., Liu, X.N.: A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Article  Google Scholar 

  39. Yue, Y.M., Kai, K.Y., Ru, C.Q.: Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int. J. Non-Liner Mech. 88, 67–73 (2017)

    Article  Google Scholar 

  40. Ru, C.Q.: A strain-consistent elastic plate model with surface elasticity. Continuum Mech. Therm. 28, 263–273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mindlin, R.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 52–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mindlin, R.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  43. Mindlin, R., Eshelby, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  44. Altan, B.S., Aifantis, E.C.: On the structure of the mode-III crack-tip in gradient elasticity. Scripta Meter. 26, 319–324 (1992)

    Article  Google Scholar 

  45. Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  46. Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)

    Article  MATH  Google Scholar 

  47. Gutkin, M.Y.: Nanoscopics of dislocations and disclinations in gradient elasticity. Rev. Adv. Mater. Sci. 1, 27–60 (2000)

    Google Scholar 

  48. Gitman, I.M., Askes, H., Kuhl, E., Aifantis, E.C.: Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int. J. Solids Struct. 47, 1099–1107 (2010)

    Article  MATH  Google Scholar 

  49. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  50. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Book Company, New York (1959)

    MATH  Google Scholar 

  51. Ungbhakorn, A., Singhatanadgid, P.: Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method. Comp. Struct. 73, 120–128 (2006)

    Article  Google Scholar 

  52. Ansari, R., Gholami, R., Shojaei, F.M., Mohammadi, V., Sahmani, S.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Comp. Struct. 100, 385–397 (2013)

    Article  Google Scholar 

  53. Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, 568–579 (2008)

    Article  MATH  Google Scholar 

  54. Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates Phys. Rev. Lett. 99, 206102 (2007)

    Article  Google Scholar 

  55. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2007)

    Google Scholar 

  56. Movassagh, A.A., Mahmoodi, M.J.: A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur. J. Mech. A-Solid. 40, 50–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We give our sincere thanks to China Scholarship Council (CSC), National Natural Science Foundation of China (No.11072138), and Natural Science Foundation of Shanghai (No. 15ZR1416100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y.M., Xu, K.Y., Tan, Z.Q. et al. The influence of surface stress and surface-induced internal residual stresses on the size-dependent behaviors of Kirchhoff microplate. Arch Appl Mech 89, 1301–1315 (2019). https://doi.org/10.1007/s00419-018-01504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-01504-x

Keywords

Navigation