Skip to main content
Log in

Micromorphic continua: non-redundant formulations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The kinematics of generalized continua is investigated and key points concerning the definition of overall tangent strain measure are put into evidence. It is shown that classical measures adopted in the literature for micromorphic continua do not obey a constraint qualification requirement, to be fulfilled for well-posedness in optimization theory, and are therefore termed redundant. Redundancy of continua with latent microstructure and of constrained Cosserat continua is also assessed. A simplest, non-redundant, kinematic model of micromorphic continua, is proposed by dropping the microcurvature field. The equilibrium conditions and the related variational linear elastostatic problem are formulated and briefly discussed. The simplest model involves a reduced number of state variables and of elastic constitutive coefficients, when compared with other models of micromorphic continua, being still capable of enriching the Cauchy continuum model in a significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romano, G.: Scienza delle Costruzioni, Tomo I. http://wpage.unina.it/romano. Hevelius, Benevento (2002) (in Italian)

  2. Toupin, R.A.: Theory of elasticity with couple stresses. Arch. Rat. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mindlin, R.D.: Micro-structures in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C., Şuhubi, E.S.: Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2(189–203), 389–404 (1964)

    MATH  Google Scholar 

  5. Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348 (2004)

  6. Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb. A 136, 997–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Briefs in Continuum Mechanics. Springer, Berlin (2013). doi:10.1007/978-3-642-28353-6

    Book  MATH  Google Scholar 

  9. Del Piero, G.: A rational approach to Cosserat continua, with application to plate and beam theories. Mech. Res. Commun. 58, 97–104 (2014)

    Article  Google Scholar 

  10. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 20, 1–20 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-div- and devsym-devcurl-inequalities for incompatible square tensor fields with mixed boundary conditions. arXiv:1307.1434 (2013)

  13. Neff, P., Ghiba, I.-D., Lazar, M., Madeo, A.: The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations. Quart. J. Mech. Appl. Math. 68(1), 53–84 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Neff, P., Pauly, D., Witsch, K.-J.: Poincaré meets Korn via Maxwell: extending Korns first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids 20, 1171–1197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Romano, G., Barretta, R.: Cosserat Materials? No thanks. Meeting of the Material Group of AIMETA (GMA) February 29 –March 1, Genoa, Italy (2008). http://wpage.unina.it/romano

  18. Luenberger, D.: Optimization by Vector Space Methods. Wiley, New York (1968)

    MATH  Google Scholar 

  19. Romano, G., Barretta, R.: On Euler’s stretching formula in continuum mechanics. Acta Mech. 224(1), 211–230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Romano, G., Barretta, R.: Geometric constitutive theory and frame invariance. Int. J. Non-Linear Mech. 51, 75–86 (2013)

    Article  ADS  Google Scholar 

  21. Romano, G., Barretta, R., Diaco, M.: Rate formulations in nonlinear continuum mechanics. Acta Mech. 225(6), 1625–1648 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Romano, G., Barretta, R.: Covariant hypo-elasticity. Eur. J. Mech. A/Solids 30(6), 1012–1023 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Romano, G., Barretta, R., Diaco, M.: Geometric continuum mechanics. Meccanica 49(1), 111–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Romano, G., Barretta, R., Diaco, M.: The geometry of nonlinear elasticity. Acta Mech. 225(11), 3199–3235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Romano, G.: Continuum Mechanics on Manifolds. Lecture Notes, University of Naples Federico II, Italy (2007). http://wpage.unina.it/romano

  26. Piola, G.: La meccanica dei corpi naturalmente estesi trattata col calcolo delle variazioni. Opusc. Mat. Fis. di Diversi Autori, Giusti, Milano 2, 201–236 (1833)

  27. Romano, G., Diaco, M., Barretta, R.: Variational formulation of the first principle of continuum thermodynamics. Contin. Mech. Thermodyn. 22(3), 177–187 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Romano, G., Sellitto, C., Barretta, R.: Nonlinear shell theory: a duality approach. J. Mech. Mater. Struct. 2(7), 1207–1230 (2007)

    Article  Google Scholar 

  29. Fichera, G.: Existence theorems in elasticity. In: Flügge, S. (ed.) Handbuch der Physik, vol. VI/a, pp. 347–389. Springer, Berlin (1972)

  30. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, NewYork (1976)

    Book  MATH  Google Scholar 

  31. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  32. Ciarlet, P.G.: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 1. Elsevier, Amsterdam (1988)

    Google Scholar 

  33. Chen, S., Wang, T.: Strain gradient theory with couple stress for crystalline solids. Eur. J. Mech. A/Solids 20, 739–756 (2001)

    Article  ADS  MATH  Google Scholar 

  34. Capriz, G.: Continua with latent microstructure. Arch. Ration. Mech. Anal. 90, 43–56 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neff, P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86(11), 892–912 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Romano, G., Barretta, R.: Geometric length scale in micromorphic models. Under construction (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romano.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, G., Barretta, R. & Diaco, M. Micromorphic continua: non-redundant formulations. Continuum Mech. Thermodyn. 28, 1659–1670 (2016). https://doi.org/10.1007/s00161-016-0502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0502-5

Keywords

Navigation