Skip to main content
Log in

Modeling the dynamic fracture and fragmentation of explosive-driven metal ring with notches or grooves

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dynamic fracture and fragmentation of notched rings under explosive loading were modeled to investigate the fragment characteristics (average fragment size and fragment size distribution) and their effects on fragmentation performance. An analytical model of the average fragment size was proposed for dynamic fracture and fragmentation based on energy criteria related to the material properties, strain rates, and notch effect. The theoretical solutions indicated that the notch effect was dominant with the decreased notch spacing. A law for the fragment size distribution was achieved by combining the binomial distribution. The theoretical distribution depended on the notch spacing, and the distribution was approximated by the natural fragmentation of rings with larger notch spacing. Dynamic fracture and fragmentation experiments were also conducted on cylindrical rings made of AISI 1020 steel. The experimental results were compared with the theoretical models. The average fragment sizes of the theoretical solutions agreed well with the experimental results, and the theoretical distribution provided a good description of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Villano, D., Galliccia, F.: Innovative technologies for controlled fragmentation warheads. J. Appl. Mech. 80(3), 1–9 (2013)

    Article  Google Scholar 

  2. Arnold, W.: Controlled fragmentation. In: Shock Compression of Condensed Matter. AIP Conference Proceedings, pp. 527–530 (2002)

  3. Martineau, R.L., Anderson, C., Smith, F.: Expansion of cylindrical shells subjected to internal explosive detonations. Exp. Mech. 40(2), 219–225 (2000)

    Article  Google Scholar 

  4. Singh, M., Suneja, H., Bola, M.: Dynamic tensile deformation and fracture of metal cylinders at high strain rates. Int. J. Impact Eng. 27(9), 939–954 (2002)

    Article  Google Scholar 

  5. Elek, P., Jaramaz, S.: Modeling of fragmentation of rapidly expanding cylinders. Theor. Appl. Mech. 32(2), 113–130 (2005)

    Article  MATH  Google Scholar 

  6. Gold, V.M., Baker, E.L.: A model for fracture of explosively driven metal shells. Eng. Fract. Mech. 75(2), 275–289 (2008)

    Article  Google Scholar 

  7. Feng, J., Jing, F., Zhang, G.: Dynamic ductile fragmentation and the damage function model. J. Appl. Phys. 81(1), 2575–2578 (1997)

    Article  Google Scholar 

  8. Curran, D.R.: Simple fragment size and shape distribution formulae for explosively fragmenting munitions. Int. J. Impact Eng. 20(1), 197–208 (1997)

    Article  Google Scholar 

  9. Zhou, F., Molinari, J.F., Ramesh, K.: Analysis of the brittle fragmentation of an expanding ring. Comput. Mater. Sci. 37(1), 74–85 (2006)

    Article  Google Scholar 

  10. Arnold, W., Rottenkolber, E.: Fragment mass distribution of metal cased explosive charges. Int. J. Impact Eng. 35(12), 1393–1398 (2008)

    Article  Google Scholar 

  11. Grady, D.: Fragment size distributions from the dynamic fragmentation of brittle solids. Int. J. Impact Eng. 35(12), 1557–1562 (2008)

    Article  Google Scholar 

  12. Liang, M.Z., Li, X.Y., Qin, J.G.: Improved expanding ring technique for determining dynamic material properties. Rev. Sci. Instrum. 84(6), 065114–065116 (2013)

    Article  Google Scholar 

  13. Jones, D., Chapman, D., Eakins, D.: A gas gun based technique for studying the role of temperature in dynamic fracture and fragmentation. J. Appl. Phys. 114(17), 173508–173512 (2013)

    Article  Google Scholar 

  14. Zhang, L., Jin, X., He, H.: Prediction of fragment number and size distribution in dynamic fracture. J. Phys. D Appl. Phys. 32(5), 612 (1999)

    Article  Google Scholar 

  15. Mock Jr., W., Holt, W.H.: Fragmentation behavior of Armco iron and HF-1 steel explosive-filled cylinders. J. Appl. Phys. 54(5), 2344–2351 (1983)

    Article  Google Scholar 

  16. Pandolfi, A., Krysl, P., Ortiz, M.: Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int. J. Fract. 95(1), 279–297 (1999)

    Article  Google Scholar 

  17. Mott, N.F.: Fragmentation of shell cases. NATO ASI Ser. Ser. C 189(1), 300–308 (1947)

    Google Scholar 

  18. Grady, D., Wilson, L., Reedal, D.: Comparing alternate approaches in the scaling of naturally fragmenting munitions. In: 19th International Symposium on Ballistics, Interlaken, Switzerland, pp. 591–597 (2001)

  19. Hudaverdi, T., Kuzu, C., Fisne, A.: Investigation of the blast fragmentation using the mean fragment size and fragmentation index. Int. J. Rock Mech. Min. Sci. 56, 136–145 (2012)

    Google Scholar 

  20. Grady, D., Olsen, M.: A statistics and energy based theory of dynamic fragmentation. Int. J. Impact Eng. 29(1), 293–306 (2003)

    Article  Google Scholar 

  21. Grady, D.: Fragmentation of expanding cylinders and the statistical theory of NF Mott. In: AIP Conference Proceedings, vol. 2, pp. 799–802. IOP Institute of Physice Publishing LTD (2002)

  22. De Chant, L.J.: Validation of a computational implementation of the Grady-Kipp dynamic fragmentation theory for thin metal plate impacts using an analytical strain-rate model and hydrodynamic analogues. Mech. Mater. 37(1), 83–94 (2005)

    Article  Google Scholar 

  23. Grady, D., Benson, D.: Fragmentation of metal rings by electromagnetic loading. Exp. Mech. 23(4), 393–400 (1983)

    Article  Google Scholar 

  24. Glenn, L., Chudnovsky, A.: Strain-energy effects on dynamic fragmentation. J. Appl. Phys. 59(4), 1379–1380 (1986)

    Article  Google Scholar 

  25. Zhou, F., Molinari, J.F., Ramesh, K.: A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. Int. J. Solids Struct. 42(18), 5181–5207 (2005)

    Article  MATH  Google Scholar 

  26. Rusinek, A., Zaera, R.: Finite element simulation of steel ring fragmentation under radial expansion. Int. J. Impact Eng. 34(4), 799–822 (2007)

    Article  Google Scholar 

  27. Satapathy, S., Landen, D.: Expanding ring experiments to measure high-temperature adiabatic properties. Int. J. Impact Eng. 33(1), 735–744 (2006)

    Article  Google Scholar 

  28. Cohen Jr., E.A.: New formulas for predicting the size distribution of warhead fragments. Math. Modell. 2(1), 19–32 (1981)

    Article  Google Scholar 

  29. Hopson, M., Scott, C., Patel, R.: Computational comparisons of homogeneous and statistical descriptions of AerMet100 steel subjected to high strain rate loading. Int. J. Impact Eng. 38(6), 451–455 (2011)

    Article  Google Scholar 

  30. Kong, X., Wu, W., Li, J.: A numerical investigation on explosive fragmentation of metal casing using smoothed particle hydrodynamic method. Mater. Des. 51(1), 729–741 (2013)

    Article  Google Scholar 

  31. Levy, S., Molinari, J.F., Vicari, I.: Dynamic fragmentation of a ring: predictable fragment mass distributions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 82(6), 066105 (2010)

  32. Grady, D., Kipp, M.: Geometric statistics and dynamic fragmentation. J. Appl. Phys. 58(3), 1210–1222 (1985)

    Article  Google Scholar 

  33. Grady, D.: Fragmentation of Rings and Shells: The Legacy of NF Mott. Springer, Berlin (2007)

    Google Scholar 

  34. Held, M.: Fragment mass distribution of he projectile. Propellants Explos. Pyrotech. 15, 254–260 (1990)

    Article  Google Scholar 

  35. Sil’vestrov, V.: Application of the Gilvarry distribution to the statistical description of fragmentation of solids under dynamic loading. Combust. Explos. Shock Waves 40(2), 225–237 (2004)

    Article  Google Scholar 

  36. Zecevic, B., Terzic, J., Catovic, A.: Characterization of distribution parameters of fragment mass and number for conventional projectiles. In: 14th Seminar on New Trends in Research of Energetic Materials, Pardubice, Czech Republic, pp. 1206–1039 (2011)

  37. Hiroe, T., Fujiwara, K., Hata, H.: Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations. Int. J. Impact Eng. 35(12), 1578–1586 (2008)

    Article  Google Scholar 

  38. Pike, A., Zuo, Q.: Geometric design consideration for controlled fragmentation of metallic shells. Finite Elem. Anal. Des. 91, 59–67 (2014)

    Article  Google Scholar 

  39. Yang, Y., Li, X., Chen, S.: Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Mater. Sci. Eng. A 527(20), 5084–5091 (2010)

    Article  Google Scholar 

  40. Liang, M., Li, X., Lu, F.: Effects of U-notches on the dynamic fracture and fragmentation of explosively driven cylinders. Theor. Appl. Fract. Mech. 77, 50–58 (2015)

    Article  Google Scholar 

  41. Goto, D., Becker, R., Orzechowski, T.: Investigation of the fracture and fragmentation of explosively driven rings and cylinders. Int. J. Impact Eng. 35(12), 1547–1556 (2008)

    Article  Google Scholar 

  42. Liang, M., Li, X., Lu, F.: Improved method used to investigate the dynamic shear failure of AISI 1045 steel cylinder under blast loading. Int. J. Appl. Mech. 08(01), 1650003 (2016)

    Article  Google Scholar 

  43. Li, X., Liang, M., Wang, M.: Experimental and numerical investigations on the dynamic fracture of a cylindrical shell with grooves subjected to internal explosive loading. Propellants Explos. Pyrotech. 35(1), 1–10 (2014)

    Google Scholar 

  44. Chhabildas, L.C., Thornhill, T., Reinhart, W.: Fracture resistant properties of AerMet steels. Int. J. Impact Eng. 26(1), 77–91 (2001)

    Article  Google Scholar 

  45. Kipp, M., Grady, D.: Dynamic fracture growth and interaction in one dimension. J. Mech. Phys. Solids 33(4), 399–415 (1985)

    Article  Google Scholar 

  46. Lienau, C.C.: Random fracture of a brittle solid. J. Frankl. Inst. 221(4), 485–494 (1936)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports by the China National Natural Science Funding (11202237 & 11132012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Li, X. & Lu, F. Modeling the dynamic fracture and fragmentation of explosive-driven metal ring with notches or grooves. Arch Appl Mech 87, 617–631 (2017). https://doi.org/10.1007/s00419-016-1212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1212-y

Keywords

Navigation