Skip to main content
Log in

A new component mode synthesis for dynamic mixed thin plate finite element models

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a methodology for the reduction in dynamic mixed finite element models (DM-FEMs) based on the use of a sub-structuring primal methods adapted to such models. We implement a DM-FEM for Kirchhoff–Love thin plates using the Hellinger–Reissner variational mixed formulation adapted to dynamic, and give a quick insight of its convergence. This model uses both displacement and generalized stress fields within the plate, obtained as a primary result, but the numerical size of the model is bigger than with a primal displacement model. Thus, we choose to offset this complication by reducing the model with a totally new sub-structuring reduction method, especially adapted to DM-FEMs. The aim of our method is to adapt sub-structuring reduction methods commonly used for primal displacement FEM only (such as Craig and Bampton method) and split the reduction in the two fields. With these displacement methods, the whole structure is splitted into few smaller ones, and each of them is condensed with eigenmodes of the substructure and static connections between them. The principle of our method is to build, for each substructure, a reduced basis for the displacements according to the existing method, and a projection of the primal basis for the stresses. A new reduced basis for the whole mixed model is then built up exclusively with modes taken from the primal model. That method reduces significantly the number of degrees of freedom and keeps the properties and advantages of the mixed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Argyris, J.H.: Continua and discontinua. In: Proceedings of the Conference Matrix Methods in Structural Mechanics, pp. 11–190 (1965)

  2. Arnold, D.N., Brezzi, F., Douglas Jr, J.: Peers: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53(1–2), 13–30 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Winther, R.: Mixed finite element for elasticity in the stress–displacement formulation. Contemp. Math. 329, 33–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayad, R., Dhatt, G., Batoz, J.L.: A new hybrid variational approach for Reissner–Mindlin plates. The MiSP model. Int. J. Numer. Methods Eng. 42, 1149–1179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuska, I.: The finite element method with lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bathe, K.J., Dvorkin, E.N.: Short communication a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985)

    Article  MATH  Google Scholar 

  8. Bathe, K.J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22, 697–722 (1986)

    Article  MATH  Google Scholar 

  9. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptative structural elements: a survey. Comput. Struct. 76, 347–363 (2000)

    Article  Google Scholar 

  10. Benjeddou, A., Andrianarison, O.: A thermopiezoelectric mixed variational theorem for smart, multilayered composites. Comput. Struct. 83, 1266–1276 (2005)

    Article  Google Scholar 

  11. Besset, S., Jézéquel, L.: Dynamic sub-structuring based on a double modal analysis. J. Vib. Acoust. 130(1), 011008 (2008)

    Article  Google Scholar 

  12. Bletzinger, K.U., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite element. Comput. Struct. 75, 321–334 (2000)

    Article  Google Scholar 

  13. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue Francaise d’Automatique, informatique, rechefceh opérationnelle, analyse numérique 8(2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  14. Brizard, D., Jézéquel, L., Besset, S., Troclet, B.: Determinental method for locally modified structures. Application to the vibration damping of a space launcher. Comput. Mech. 20, 631–644 (2012)

    Article  MATH  Google Scholar 

  15. Bron, J., Dhatt, G.: Mixed quadrilateral elements for bending. AIAA J. 10, 1359–1361 (1972)

    Article  Google Scholar 

  16. Carrera, E.: An improved Reissner–Mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. J. Intell. Mater. Syst. Struct. 8, 232–248 (1997)

    Article  Google Scholar 

  17. Carrera, E.: Evaluation of layerwise mixed theories for laminated plate analysis. AIAA J. 36, 830–839 (1998)

    Article  Google Scholar 

  18. Carrera, E.: An assesment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. J. Therm. Stresses 23, 797–831 (2000)

    Article  Google Scholar 

  19. Carrera, E.: Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells. Appl. Mech. Rev. 54, 301–329 (2001)

    Article  Google Scholar 

  20. Carrera, E., Boscolo, M.: Classical and mixed finite element for static and dynamic analysis of piezoelectric plates. Int. J. Numer. Methods Eng. 70, 1135–1181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carrera, E., Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: derivation of finite element matrices. Int. J. Numer. Methods Eng. 55, 191–231 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carrera, E., Demasi, L.: Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: numerical implementation. Int. J. Numer. Methods Eng. 55, 253–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chatterjee, A., Setlur, A.V.: A mixed finite element formulation for plate problems. Int. J. Numer. Methods Eng. 4, 67–84 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cho, M., Parmerter, R.: Efficient higher order composite plate theory for general lamination configurations. AIAA J. 31(7), 1299–1306 (1993)

    Article  MATH  Google Scholar 

  25. Civalek, O.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  26. Civalek, O.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49, 752–765 (2007)

    Article  Google Scholar 

  27. Civalek, O.: Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method. Finite Elem. Anal. Des. 44, 725–731 (2008)

    Article  Google Scholar 

  28. Clough, R.W., Tocher, J.I.: Finite element stiffness matrix for the analysis for plate bending. In: Proceedings of Conference on Matrix Methods in Structural Analysis, pp. 515–546 (1965)

  29. Craig, R.R. : Coupling of substructures for dynamic analyses: an overview. In: Structures, Structural Dynamics and Material Conference, 41st AIAA/ASME/ASCE/AHS/ASC. AIAA-2000-1573, Atlanta (2000)

  30. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  31. de Miranda, S., Ubertini, F.: A simple hybrid stress element for shear deformable plates. Int. J. Numer. Methods Eng. 65, 808–833 (2006)

    Article  MATH  Google Scholar 

  32. Duan, M., Miyamoto, Y., Iwasaki, S., Deto, H.: Numerical implementation of hybrid-mixed finite element model for Reissner–Mindlin plates. Finite Elem. Anal. Des. 33, 167–185 (1999)

    Article  MATH  Google Scholar 

  33. Fantuzzi, N., Tornabene, F.: Strong formulation finite element method for arbitrarily shaped laminated plates—part 1. Theoretical analysis. Adv. Aircr. Spacecr. Sci. 1, 125–143 (2014)

    Article  Google Scholar 

  34. Fantuzzi, N., Tornabene, F.: Strong formulation finite element method for arbitrarily shaped laminated plates—part 2. Numerical analysis. Adv. Aircr. Spacecr. Sci. 1, 145–175 (2014)

    Article  Google Scholar 

  35. Fantuzzi, N., Tornabene, F., Viola, E., Ferreira, A.J.M.: A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49, 2503–2542 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ferreira, A.J.M., Castro, L.M.S., Bertoluzza, S.: Analysis of plates on winkler foundation by wavelet collocation. Meccanica 46, 865–873 (2011)

    Article  MATH  Google Scholar 

  37. Fraeijs de Veubeke, B.: Displacement and Equilibrium Models in the Finite Element Method, Chapter 9. Wiley, New York (1965)

    Google Scholar 

  38. Fraeijs de Veubeke, B., Sander, G.: An equilibrium model for plate bending. Int. J. Solids Struct. 4, 447–768 (1968)

    Article  Google Scholar 

  39. Garcia Lage, R., Mota Soares, C.M., Mota Soares, C.A., Reddy, J.N.: Analysis of adaptative plate structures by mixed layerwise finite elements. Compos. Struct. 66, 269–276 (2004)

    Article  Google Scholar 

  40. Garcia Lage, R., Mota Soares, C.M., Mota Soares, C.A., Reddy, J.N.: Modelling of piezolamited plates using layerwise mixed elements. Comput. Struct. 81, 1849–1863 (2004)

    Article  Google Scholar 

  41. Gellert, M., Laursen, M.E.: Formulation and convergence of a mixed finite element method applied to elastic arches of arbitrary geometry and loading. Comput. Methods Appl. Mech. Eng. 7, 285–302 (1976)

    Article  MATH  Google Scholar 

  42. Hellinger, E.: Die allgemeinen ansatze der mechanik der kontinua. Encyklopadie der mathematischen Wissenschaften 4 (1914)

  43. Henshell, R.D.: A théoritical basis for hybrid finite elements in dynamic problems. J. Sound Vib. 39(4), 520–522 (1975)

    Article  Google Scholar 

  44. Henshell, R.D., Walters, D., Warburton, G.B.: A new family of curvilinear plate bending elements for vibration and stability. J. Sound Vib. 20(3), 381–397 (1972)

    Article  MATH  Google Scholar 

  45. Herrmann, L.R.: A bending analysis for plates. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, A.F.F.D.L-TR-66-88, pp. 577–604 (1965)

  46. Herrmann, L.R.: Finite element bending analysis. J. Eng. Mech. Div. A.S.C.E EM5 93, 13–26 (1967)

    Google Scholar 

  47. Hughes, T.J.R., Cohen, M., Haron, M.: Reduced and selective integration techniques in the finite element analysis of plates. Nucl. Eng. Des. 46, 203–222 (1978)

    Article  Google Scholar 

  48. Jézéquel, L., Setio, H.D.: Component modal synthesis methods based on hybrid models, part 1: theory of hybrid models and modal truncation methods. J. Appl. Mech. 61, 100–108 (1994)

    Article  MATH  Google Scholar 

  49. Jézéquel, L., Setio, H.D.: Component modal synthesis methods based on hybrid models, Part 2: numerical test analysed experimental identification of hybrid models. J. Appl. Mech. 61(1), 109–116 (1994)

    Article  Google Scholar 

  50. Koschnick, F., Bischoff, M., Camprubì, N., Bletzinger, K.U.: The discrete strain gap method and membrane locking. Comput. Methods Appl. Mech. Eng. 194, 2444–2463 (2005)

    Article  MATH  Google Scholar 

  51. Lee, S.W., Rhiu, J.J.: A new efficient approach to the formulation of mixed finite element model for structural analysis. Int. J. Numer. Methods Eng. 21, 1629–1641 (1986)

    Article  MATH  Google Scholar 

  52. Liew, K.M., Han, J.-B.: A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates. Commun. Numer. Methods Eng. 13, 73–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lo, K.H., Christensen, R.M., Wu, M.: A high-order theory of plate deformation—part 2: laminated plates. J. Appl. Mech. 44, 669–676 (1977)

    Article  MATH  Google Scholar 

  54. Love, A.E.H.: On the small free vibrations and deformations of elastic shells. Philos. Trans. R. Soc. Lond. 17, 491–549 (1888)

    Article  MATH  Google Scholar 

  55. MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1, 581–601 (1971)

    Article  Google Scholar 

  56. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  57. Nguyen-Xuan, H., Liu, G.R., Thai-Hoang, C., Nguyen-Thoi, T.: An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. 199, 471–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Omurtag, M.H., Kadioglu, F.: Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation. Comput. Struct. 67, 253–265 (1998)

    Article  MATH  Google Scholar 

  59. Pian, T.H.H., Chen, D.P., Kang, D.: A new formulation of hybrid/mixed finite element. Comput. Struct. 16, 81–87 (1983)

    Article  MATH  Google Scholar 

  60. Pian, T.H.H., Tong, P.: Finite element methods in continuum mechanics. Adv. Appl. Mech. 12, 1–58 (1972)

    Article  MATH  Google Scholar 

  61. Prange, G.: Die variations- und minimalprinzipe der statik der baukonstruktion (doctoral dissertation). Habilitationsschrift, Technische Hochschule Hannover (1916)

  62. Reddy, J.N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Methods 3, 173–180 (1987)

    Article  MATH  Google Scholar 

  63. Reddy, J.N.: Theory and analysis of elastic plates and shells , 2nd edn. Taylor and Francis (2007)

  64. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)

    MathSciNet  MATH  Google Scholar 

  65. Reissner, E.: On a variational theorem in elasticity. J. Math. Phys. 29, 90–95 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  66. Reissner, E.: On a certain mixed variational theorem and a proposed application. Int. J. Numer. Methods Eng. 20(7), 1366–1368 (1984)

    Article  MATH  Google Scholar 

  67. Reissner, E.: On a mixed variational theorem and on shear deformable plate theory. Int. J. Numer. Methods Eng. 23(2), 193–198 (1986)

    Article  MATH  Google Scholar 

  68. Saleeb, A.F., Chang, T.Y.: On the hybrid-mixed formulation of c0 curved beams. Comput. Methods Appl. Mech. Eng. 60, 95–121 (1987)

    Article  MATH  Google Scholar 

  69. Srinivas, N.: A refined analysis of composite laminates. J. Sound Vib. 30(4), 495–507 (1973)

    Article  MATH  Google Scholar 

  70. Stolarski, H., Belytschko, T.: Shear and membrane locking in curved c0 elements. Comput. Methods Appl. Mech. Eng. 41, 279–296 (1983)

    Article  MATH  Google Scholar 

  71. Stolarski, H., Belytschko, T.: On the equivalence of mode decomposition and mixed finite element based on the Hellinger–Reissner principle. Part 1: theory. Comput. Methods Appl. Mech. Eng. 58, 249–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  72. Stolarski, H., Belytschko, T.: On the equivalence of mode decomposition and mixed finite element based on the Hellinger–Reissner principle. Part 2: application. Comput. Methods Appl. Mech. Eng. 58, 265–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tong, P., Pian, T.H.H.: A variational principle and the convergence of a finite element method based on assumed stress distribution. Int. J. Solids Struct. 5, 463–472 (1969)

    Article  MATH  Google Scholar 

  74. Tornabene, F., Fantuzzi, N., Viola, E., Batra, R.C.: Stress and strains recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 119, 67–89 (2015)

    Article  Google Scholar 

  75. Tornabene, F., Fantuzzi, N., Viola, E., Cinefra, M., Carrera, E., Ferreira, A., Zenkour, A.M.: Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation. Compos. Part B Eng. 58, 544–552 (2014)

    Article  Google Scholar 

  76. Tran, D.M.: Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry. Comput. Struct. 79, 209–222 (2001)

    Article  Google Scholar 

  77. Washizu, K.: Variational Methods in Elasticity and Plasticity, 2nd edn. Pergamon Press, New York (1975)

    MATH  Google Scholar 

  78. Wriggers, P., Carstensen, C. (eds.): Mixed finite element technologies. Applied Mathematics/Computational Methods of Engineering, Springer (2009)

  79. Wu, F., Liu, G.R., Li, G.Y., Cheng, A.G., He, Z.C.: A new hybrid-smoothed FEM for static and free vibration analyses of Reissner–Mindlin plates. Comput. Mech. 54(3), 865–890 (2014)

    Article  MATH  Google Scholar 

  80. Xiang, S., Shi, H., Wang, K.M., Ai, Y.T., Sha, Y.D.: Thin plate spline radial basis functions for vibration analysis of clamped laminated composite plates. Eur. J. Mech. A. Solids 29, 844–850 (2010)

    Article  Google Scholar 

  81. Zienkiewicz, O.C., Cheung, Y.K.: The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the French Education Ministry which supports this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Garambois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garambois, P., Besset, S. & Jézéquel, L. A new component mode synthesis for dynamic mixed thin plate finite element models. Arch Appl Mech 86, 933–956 (2016). https://doi.org/10.1007/s00419-015-1072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1072-x

Keywords

Navigation