Skip to main content
Log in

Generalized Reynolds equation for fluid film problems with arbitrary boundary conditions: application to double-sided spiral groove thrust bearings

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Reliable high-performance bearings are essential in rotordynamics. As speeds and loads are continuously increased, the demands on bearing technology grow simultaneously. Detailed calculations of bearing characteristics become more important under these circumstances. In this work, a generalized Reynolds equation for analysing thin film lubrication problems is presented. The equation describes the flow of compressible fluids in arbitrary narrow gaps with general boundary conditions. As an application for this equation, we consider the double-sided spiral groove thrust bearing. A CFD calculation is performed to validate the generalized Reynolds equation derived here. On the basis of a particle swarm optimization method, optimal geometrical bearing parameters are identified. Performance charts for optimized bearing configurations with respect to load carrying capacity and friction coefficient are delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bonneau, A., Huitric, J., Tournerie, B.: Finite element analysis of grooved gas thrust bearings and grooved gas face seals. Trans. ASME 115, 348–355 (1993)

    Article  Google Scholar 

  2. Boyaci, A., Seemann, W., Proppe, C.: Nonlinear stability analysis of rotor-bearing systems. PAMM Proc. Appl. Math. Mech. 9, 279–280 (2009). doi:10.1002/pamm.200910113

    Article  Google Scholar 

  3. Boyaci, A., Steinhilber, G., Seemann, W., Proppe, C.: Zur Stabilität eines in Gleitlagern laufenden elastischen Rotors, SIRM 2009 - 8th International Conference on Vibrations in Rotating Machines, Paper-ID 18, Vienna, Austria, 23 - 25 February 2009, ISBN 978-3-200-01412-1

  4. Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings, Nonlinear Dynamics, doi:10.1007/s11071-008-9403-x

  5. Bruckner, R.: Simulation and modeling of the hydrodynamic, thermal, and structural behavior of foil thrust bearings, PHD Thesis, Case Western Reverse University, USA, (2004), https://etd.ohiolink.edu/

  6. Childs, D.: Turbomachinery Rotordynamics. Wiley, New York (1993)

    Google Scholar 

  7. Daniel, C., Strakeljan, J., Woschke, E.: Modellierung von Gleitlagern in rotordynamischen Modellen SIRM 2009 - 8th International Conference on Vibrations in Rotating Machines, Vienna, Austria, 23–25 February 2009

  8. Daniel, C.; Göbel, S.; Nitzschke, S.; Woschke, E.; Strackeljan, J.: Numerical Simulation of the Dynamic Behaviour of Turbochargers under Consideration of Full-Floating-Ring Bearings and Ball Bearings 11th International Conference on Vibration Problems, Z. Dimitrovov et.al. (eds.), Lisbon, Portugal, 912 September 2013

  9. DellaCorte, C., Zaldana, R., Radil, K.: A systems approach to the solid lubrication of foil air bearings for oil-free turbomachinery. J. Tribol. 126, 200–207 (2004)

    Article  Google Scholar 

  10. Dowson, D.: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sol. Pergamon Press Ltd. 4, 159–170 (1962)

    Google Scholar 

  11. Dykas, B.: Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil-Free Turbomachinery Applications, PHD Thesis, Case Western Reverse University, USA, (2006), https://etd.ohiolink.edu/

  12. Fischer, J., Strakeljan, J.: A nonlinear numerical simulation of a lab centrifuge with internal damping. Nonlinear Dyn. 60, 3947 (2010). doi:10.1007/s11071-009-9578-9

    Article  Google Scholar 

  13. Yemelyanov, A., Yemelyanov, I.: Theory of binary spiral-grooved gas bearings. Fluid Dyn. 35, 351–360 (2000)

    Article  MATH  Google Scholar 

  14. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2005)

    Google Scholar 

  15. Hamrock, B., Schmid, S., Jacobson, B.: Fundamentals of Fluid Film Lubrication. Dekker, New York City (2004)

    Book  Google Scholar 

  16. Hashimoto, H., Namba, T.: Optimization of groove geometry for a thrust air bearing according to various objective functions. J. Tribol. 131, 041704-1–041704-10 (2009)

    Google Scholar 

  17. Hashimoto, H., Ochiai, M., Nanba, T.: Theoretical analysis and optimum design of high speed air film thrust bearings. J. Adv. Mech. Des. Syst. Manuf. 1, 306–318 (2007)

    Google Scholar 

  18. James, D., Potter, A.: Numerical analysis of the gas-lubricated spiral-groove thrust bearing-compressor. J. Lubr. Tech. 89(4), 439–443 (1967)

    Article  Google Scholar 

  19. Khonsari, M., Booser, E.: Applied Tribology: Bearing Design and Lubrication. Wiley, New York (2008)

    Book  Google Scholar 

  20. Lu, X.; Khonsari, M.M.: An experimental study of oil-lubricated journal bearings undergoing oscillatory motion. J. Tribol. Trans. ASME. 130(2), 021702-1–021702-7 (2008)

  21. Malanoski, S., Pan, C.: The static and dynamic characteristics of the spiral-grooved bearing, transactions of the ASME. J. Basic Eng. 87, 547–558 (1965)

    Article  Google Scholar 

  22. Muijderman, E.: Spiral Groove Bearings, PhD thesis, University Delft, (1964)

  23. Muszynska, A.: Rotordynamics. Taylor and Francis, United Kingdom (2005)

    Book  MATH  Google Scholar 

  24. Myers, C.J.: Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. ASME J. Appl. Mech. 51, 244–250 (1984)

    Article  MATH  Google Scholar 

  25. Reynaerts, D.; Van Den Braembussche, J.; Hendrick, P.; and others: Development of a gas turbine with a 20 mm rotor: review and perspectives, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, November 29–December 1, (2006), Berkeley, USA

  26. Schweizer, B., Sievert, M.: Nonlinear oscillations of automotive turbocharger turbines. J. Sound Vib. 321, 955–975 (2009)

    Article  Google Scholar 

  27. Schweizer, B.: Total instability of turbocharger rotors—physical explanation of the dynamic failure of rotors with full-floating ring bearings. J. Sound Vib. 328, 156–190 (2009)

    Article  Google Scholar 

  28. Schweizer, B.: Dynamics and stability of turbocharger rotors. Arch. Appl. Mech. 80, 1017–1043 (2010)

    Article  Google Scholar 

  29. Sedlaczek, K.; Eberhard, P.: Constrained particle swarm optimization of mechanical systems. In: Proceedings of the 6th WCSMO, Rio de Janeiro, Brazil

  30. Shaw, J., Shaw, S.W.: The effects of unbalance on oil whirl. Nonlinear Dyn. 1, 293–311 (1990)

    Article  Google Scholar 

  31. Vleugels, P.; Waumans, T.; Peirs, J.; Al Bender, F.; Reynaerts, D.: High-speed foil bearings for micro gas turbines: test set-up, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, November 29–December 1, (2006), Berkeley, USA

  32. Waters, D.: The American gas centrifuge: past, present, and future, 8. workshop on separation phenomena in liquids and gases (SPLG 2003), Oak Ridge, TN (US), 12–16 October 2003

  33. Whipple, R.: Theory of the spiral grooved thrust bearing with liquid or gas lubricant. Technical report, Atomic Energy Research Establishment, Harwell, Berkshire, England, T/R 622, (1951)

  34. Xue, Y., Stolarski, T.: Numerical prediction of the performance of gas-lubricated spiral groove thrust bearings. J. Eng. Tribol. 211, 117–128 (1997)

    Google Scholar 

  35. Yemelyanov, A., Yemelyanov, I.: Physical models, theory and fundamental improvement to self-acting spiral-grooved gas bearings and visco-seals. In: Proceedings of the Institution of Mechanical Engineers 213, (1999)

  36. Ying, G., Meng, G., Jing, J.: Turbocharger rotor dynamics with foundation excitation. Arch. Appl. Mech. 79(4), 287–299 (2009)

    Article  MATH  Google Scholar 

  37. Zhao, S., Wallaschek, J.: Design and Modeling of A Novel Squeeze Film Journal Bearing Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation August 9–12, Changchun, China

  38. Zhao, S., Wallaschek, J.: Experimental Investigations of Ultrasonic Levitation in A Machine Tool Spindle System, Ultrasonics Symposium (IUS), IEEE International. (2009). doi:10.1109/ULTSYM.2009.5441680

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lehn.

Appendix A : details of the derivation of the two-sided generalized Reynolds equation

Appendix A : details of the derivation of the two-sided generalized Reynolds equation

In Sect. 2.1, the derivation of the two-sided generalized Reynolds equation has been outlined. Here, the relevant steps to derive Eq. (11) starting from Eq. (9) are presented in detail. Applying to the second and third term of Eq. (9) in the general relation

$$\begin{aligned} \int \limits _{h_{1}}^{h_2} \frac{\partial {}}{\partial {x}} f(x,y,z)\mathrm{{d}}z\,=\, \frac{\partial {}}{\partial {x}} \int \limits _{h_{1}}^{h_2} f(x,y,z) \mathrm{{d}}z- f(x,y,h_2) \frac{\partial {h_2}}{\partial {x}}\,+\, f(x,y,h_1) \frac{\partial {h_1}}{\partial {x}} , \end{aligned}$$
(30)

we get

$$\begin{aligned} \begin{aligned} \int \limits _{h_{1}}^{h_2} \frac{\partial {\rho }}{\partial {t}}\mathrm{{d}}z\,+\,&\underbrace{ \left( \frac{\partial {}}{\partial {x}} \int \limits _{h_{1}}^{h_2} \rho u \mathrm{{d}}z - (\rho u)_2 \frac{\partial {h_2}}{\partial {x}} \,+\, (\rho u)_1 \frac{\partial {h_1}}{\partial {x}} \right) }_{I}+ \\&\underbrace{ \left( \frac{\partial {}}{\partial {y}} \int \limits _{h_{1}}^{h_2} \rho v \mathrm{{d}}z - (\rho v)_2 \frac{\partial {h_2}}{\partial {y}} \,+\, (\rho v)_1 \frac{\partial {h_1}}{\partial {y}} \right) }_{II}\,+\, \int \limits _{h_{1}}^{h_2} \frac{\partial {(\rho w)}}{\partial {z}}\mathrm{{d}}z=0 . \end{aligned} \end{aligned}$$
(31)

Splitting into two terms, expression I can be rewritten as

$$\begin{aligned} I= \underbrace{ \left( \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \rho u \mathrm{{d}}z - (\rho u)_2 \frac{\partial {h_2}}{\partial {x}} \right) }_{I_A} - \underbrace{ \left( \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_1} \rho u \mathrm{{d}}z - (\rho u)_1 \frac{\partial {h_1}}{\partial {x}} \right) }_{I_B} . \end{aligned}$$
(32)

Applying the product rule to the second term of \(I_A\) results in

$$\begin{aligned} I_A= \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \rho u \mathrm{{d}}z - \frac{\partial {}}{\partial {x}} \bigg [(\rho u)_2 h_2 \bigg ] + \left[ \frac{\partial {}}{\partial {x}}(\rho u)_2 \right] h_2 . \end{aligned}$$
(33)

Next, we are going to rewrite the first and second term of Eq. (33) by considering the following identity

$$\begin{aligned}{}[\rho z u]_0^{h_2} = \int \limits _{0}^{h_2} \frac{\partial {\rho }}{\partial {z}} zu \mathrm{{d}}z \,+\, \int \limits _{0}^{h_2} \rho \frac{\partial {z}}{\partial {z}} u \mathrm{{d}}z \,+\, \int \limits _{0}^{h_2} \rho z \frac{\partial {u}}{\partial {z}} \mathrm{{d}}z . \end{aligned}$$
(34)

Using \([\rho z u]_0^{h_2} = (\rho u)_2 \cdot h_2 \), partial differentiation of Eq. (34) with respect to x and reordering of terms gives

$$\begin{aligned} \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \rho u \mathrm{{d}}z - \left[ \frac{\partial {}}{\partial {x}}(\rho u)_2 h_2 \right] = - \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \frac{\partial {\rho }}{\partial {z}} zu \mathrm{{d}}z - \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \rho z \frac{\partial {u}}{\partial {z}} \mathrm{{d}}z . \end{aligned}$$
(35)

If we insert this result in Eq. (33) and if we perform the manipulations (33)–(35) analogously for \(I_B\), expression I becomes

$$\begin{aligned} I= h_2 \left[ \frac{\partial {}}{\partial {x}}(\rho u)_2 \right] - \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_2} \left( \rho z \frac{\partial {u}}{\partial {z}} \,+\, zu \frac{\partial {\rho }}{\partial {z}}\right) \mathrm{{d}}z - h_1 \left[ \frac{\partial {}}{\partial {x}}(\rho u)_1 \right] \,+\, \frac{\partial {}}{\partial {x}} \int \limits _{0}^{h_1} \left( \rho z \frac{\partial {u}}{\partial {z}} \,+\, zu \frac{\partial {\rho }}{\partial {z}}\right) \mathrm{{d}}z . \end{aligned}$$
(36)

Making use of similar manipulations for expression II in Eq. (31), we arrive at the final form of the integrated continuity equation (see Eq. (10) in Sect. 2.1)

$$\begin{aligned} \begin{aligned} \int \limits _{h_{1}}^{h_2} \frac{\partial {\rho }}{\partial {t}}\mathrm{{d}}z&+ \underbrace{ \left\{ h_2 \left[ \frac{\partial {}}{\partial {x}}(\rho u)_2 + \frac{\partial {}}{\partial {y}}(\rho v)_2 \right] - h_1 \left[ \frac{\partial {}}{\partial {x}}(\rho u)_1 \,+\, \frac{\partial {}}{ \partial {y}}(\rho v)_1 \right] \right\} }_{I_a} \\&-\frac{\partial {}}{\partial {x}} \underbrace{ \int \limits _{h_{1}}^{h_2} \left( \rho z \frac{\partial {u}}{\partial {z}} \,+\, zu \frac{\partial {\rho }}{\partial {z}}\right) \mathrm{{d}}z }_{II_a} -\frac{\partial {}}{\partial {y}} \underbrace{ \int \limits _{h_{1}}^{h_2} \left( \rho z \frac{\partial {v}}{\partial {z}} \,+\, zv \frac{\partial {\rho }}{\partial {z}}\right) \mathrm{{d}}z }_{III_a} + \int \limits _{h_{1}}^{h_2} \frac{\partial {(\rho w)}}{\partial {z}}\mathrm{{d}}z =0 . \end{aligned} \end{aligned}$$
(37)

whereas \(I_a\) contains only expressions that are evaluated at the boundaries of the fluid film, terms \(II_a\) and \(III_a\) need further manipulations. Inserting the fluid velocity u(z) from (6) into \(II_a\), we get

$$\begin{aligned} \begin{aligned} II_a&= \underbrace{ \int \limits _{h_{1}}^{h_2} \rho z \frac{\partial {}}{\partial {z}} \left[ \frac{\partial {p}}{\partial {x}} \int \limits _{h_{1}}^{z} \frac{z}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z}_{I_b} \,+\, \underbrace{ \int \limits _{h_{1}}^{h_2} \rho z \frac{\partial {}}{\partial {z}} \left[ \frac{U_2-U_1}{F_0} \int \limits _{h_{1}}^{z} \frac{1}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z}_{II_b} \,+\, \underbrace{ \int \limits _{h_{1}}^{h_2} \rho z \frac{\partial {}}{\partial {z}} \left[ -\frac{\partial {p}}{\partial {x}} \frac{F_1}{F_0} \int \limits _{h_{1}}^{z} \frac{1}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z }_{III_b} \\&+ \underbrace{ \int \limits _{h_{1}}^{h_2} z \frac{\partial {\rho }}{\partial {z}} U_1 \mathrm{{d}}z}_{IV_b} \,+\, \underbrace{ \int \limits _{h_{1}}^{h_2} z \frac{\partial {\rho }}{\partial {z}} \left[ \frac{\partial {p}}{\partial {x}} \int \limits _{h_{1}}^{z} \frac{z}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z}_{V_b} \,+\, \underbrace{ \int \limits _{h_{1}}^{h_2} z \frac{\partial {\rho }}{\partial {z}} \left[ \frac{U_2-U_1}{F_0} \int \limits _{h_{1}}^{z} \frac{1}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z}_{VI_b} \\&+ \underbrace{ \int \limits _{h_{1}}^{h_2} z \frac{\partial {\rho }}{\partial {z}} \left[ -\frac{\partial {p}}{\partial {x}} \frac{F_1}{F_0} \int \limits _{h_{1}}^{z} \frac{1}{\eta } \mathrm{{d}}z \right] \mathrm{{d}}z }_{VII_b} . \end{aligned} \end{aligned}$$
(38)

Grouping terms and using the definitions for \(F_i,G_i\) from Eq. (12) results in

$$\begin{aligned} \begin{aligned} I_b+III_b&= \frac{\partial {p}}{\partial {x}} \int \limits _{h_{1}}^{h_2} \rho z \underbrace{\left[ \frac{\partial {}}{\partial {z}} \int \limits _{h_{1}}^{z} \frac{z}{\eta } \mathrm{{d}}z \right] }_{\frac{z}{\eta }} \mathrm{{d}}z \,-\, \frac{\partial {p}}{\partial {x}} \int \limits _{h_{1}}^{h_2} \rho z \frac{F_1}{F_0} \underbrace{ \left[ \frac{\partial {}}{\partial {z}} \int \limits _{h_{1}}^{z} \frac{1}{\eta } \mathrm{{d}}z \right] }_{\frac{1}{\eta }} \mathrm{{d}}z = F_2 \frac{\partial {p}}{\partial {x}} , \\ II_b+VI_b&\,=\, \frac{U_2-U_1}{F_0}(F_3+G_2) , \\ IV_b&\,=\, G_3 U_1 , \\ V_b+VII_b&\,=\, G_1 \frac{\partial {p}}{\partial {x}} , \end{aligned} \end{aligned}$$
(39)

Inserting (39) into the integrated continuity Eq. (37) and performing analogous manipulations for expression \(III_a\), the double-sided generalized Reynolds Eq. (11) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehn, A., Schweizer, B. Generalized Reynolds equation for fluid film problems with arbitrary boundary conditions: application to double-sided spiral groove thrust bearings. Arch Appl Mech 86, 743–760 (2016). https://doi.org/10.1007/s00419-015-1059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1059-7

Keywords

Navigation