Skip to main content
Log in

A higher-order Eringen model for Bernoulli–Euler nanobeams

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Small-scale effects in carbon nanotubes are effectively assessed by resorting to the methods of nonlocal continuum mechanics. The crucial point of this approach consists in defining suitable constitutive laws which lead to reliable results. A nonlocal elastic law, diffusely adopted in literature, is that proposed by Eringen. According to this theory, the elastic equilibrium problem of a nonlocal nanostructure is equivalent to that of a corresponding local nanostructure subjected to suitable distortions simulating the nonlocality effect. Accordingly, transverse displacements and bending moments of a Bernoulli–Euler nonlocal nanobeam can be obtained by solving a corresponding linearly elastic (local) nanobeam, subjected to the same loading and kinematic constraint conditions of the nonlocal nanobeam, but with the prescription of suitable inelastic bending curvature fields. This observation leads naturally to the definition of a higher-order Eringen version for Bernoulli–Euler nanobeams, in which the elastic energy is assumed to be dependent on the total and inelastic bending curvatures and on their derivatives. Weak and strong formulations of elastic equilibrium of first-order gradient nanobeams are provided by a consistent thermodynamic approach. Exact solutions of fully clamped and cantilever nanobeams are given and compared with those of literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The higher-order boundary condition Eq. (22)\(_3\) turns out to be identically fulfilled for the Eringen model, formulated in Sect. 4, which is got by setting \(c_1=0\).

References

  1. Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    Article  Google Scholar 

  2. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  3. de Borst, R., Muhlhaus, H.B.: Gradient-dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)

    Article  MATH  Google Scholar 

  4. Aifantis, E.C.: Gradient deformation models at nano-, micro- and macro-scales. ASME J. Eng. Mater. 121, 189–202 (1999)

    Article  Google Scholar 

  5. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P.: Gradient-enhanced damage for quasi brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)

    Article  MATH  Google Scholar 

  6. Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  7. Marotti de Sciarra, F.: On non-local and non-homogeneous elastic continua. Int. J. Solids Struct. 46, 651–676 (2009)

  8. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  9. Patti, A., Barretta, R., Marotti de Sciarra, F., Mensitieri, G., Menna, C., Russo, P.: Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling. Compos. Struct. 131, 282–289 (2015)

  10. Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F.: Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams. Compos. Struct. 129, 80–89 (2015)

  11. Marotti de Sciarra, F., Canadija, M., Barretta, R.: A gradient model for torsion of nanobeams. Comptes Rendus Mécanique 343, 289–300 (2015)

  12. Marotti de Sciarra, F., Barretta, R.: A new nonlocal bending model for Euler–Bernoulli nanobeams. Mech. Res. Comm. 62, 25–30 (2014)

  13. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  14. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  15. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  16. Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  17. Civalek, Ö., Demir, Ç.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35, 2053–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thai, H.-T., Vo, T.P.: A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54, 58–66 (2012)

    Article  MathSciNet  Google Scholar 

  19. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  20. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  21. Rafiee, R., Moghadam, R.M.: On the modeling of carbon nanotubes: a critical review. Compos. Part B Eng. 56, 435–449 (2014)

    Article  Google Scholar 

  22. Barretta, R., Marotti de Sciarra, F.: Analogies between nonlocal and local Bernoulli–Euler nanobeams. Arch. Appl. Mech. 85, 89–99 (2015)

  23. Lemaitre, J., Chaboche, J.L.: Mechanics of Solids Materials. Cambridge University Press, Cambridge (1994)

    Google Scholar 

Download references

Acknowledgments

The support of “Polo delle Scienze e delle Tecnologie”—University of Naples Federico II—through the research project FARO is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Barretta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barretta, R., Čanadija, M. & Marotti de Sciarra, F. A higher-order Eringen model for Bernoulli–Euler nanobeams. Arch Appl Mech 86, 483–495 (2016). https://doi.org/10.1007/s00419-015-1037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1037-0

Keywords

Navigation