Skip to main content
Log in

Dynamic response of sleepers in a track with uneven rail irregularities using a 3D vehicle–track model with sleeper beams

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Employing a 3D model of the vehicle–track interaction, dynamic responses of sleepers in railway tracks are determined due to the effect of uneven irregularities (cross-levels) in left/right rails. An integrated mathematical model of the vehicle–track system is used to calculate the dynamic behavior of sleepers in the railway track. The general methodology of the dynamic analysis is presented by extracting the mathematical equations and by introducing the coupling process in the wheel–rail interface. Besides the vertical (bounce) and pitch motions, roll degrees of freedom of the components are taken into account. Except rails and sleepers, other components of the vehicle–track system are simulated with the rigid-body elements, linked to each other within the resilient elements (springs and dashpots). The rails and sleepers are modeled with the beam elements, making the model more detailed in the track subsystem. A numerical integration algorithm based on Newmark’s method is developed, capable of solving the dynamic interaction of the entire system in time domain. Applying various irregularity profiles from the field measurement data as the source of excitation, the dynamic response of sleepers in track structure is treated in the longitudinal and traverse directions. Dynamic displacements under sleepers are compared with the analytical solution of the beam on elastic foundation (static response) to highlight the dynamic amplifications. The results of analysis show that the profile unevenness in left/right rails plays an important role in dynamic stability of the sleepers in railway track, particularly when the severity of the profile unevenness was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Berg, M.: A non-linear rubber spring model for rail vehicle dynamics analysis. Veh. Syst. Dyn. 30(3–4), 197–212 (1998)

    Article  Google Scholar 

  2. Law, E.H., Cooperrider, N.K.: A survey of railway vehicle dynamics research. J. Dyn. Syst. Meas. Control 96(2), 132–146 (1974)

    Article  Google Scholar 

  3. Shabana, A.A., Sany, J.R.: A survey of rail vehicle track simulations and flexible multibody dynamics. Nonlinear Dyn. 26(2), 179–212 (2001)

    Article  Google Scholar 

  4. Naeimi, M., Zakeri, J.A., Shadfar, M., Esmaeili, M.: 3D dynamic model of the railway wagon to obtain the wheel–rail forces under track irregularities. Proc. Inst. Mech. Eng. K: J. Multi-Body Dyn. (2015). doi:10.1177/1464419314566833

  5. Ahlbeck, D., Meacham, H., Prause, R.: The development of analytical models for railroad track dynamics. In: Symposium on Railroad Track Mechanics. Princeton University, Pergamon Press (1975)

  6. Baeza, L., Ouyang, H.: A railway track dynamics model based on modal substructuring and a cyclic boundary condition. J. Sound Vib. 330(1), 75–86 (2011)

    Article  Google Scholar 

  7. Grassie, S., Cox, S.: The dynamic response of railway track with flexible sleepers to high frequency vertical excitation. Proc. Inst. Mech. Eng. D: J. Automob. Eng. 198(2), 117–124 (1984)

    Article  Google Scholar 

  8. Cai, Z., Raymond, G.: Modelling the dynamic response of railway track to wheel/rail impact loading. Struct. Eng. Mech. 2(1), 95–112 (1994)

    Article  Google Scholar 

  9. Newton, S., Clark, R.: An investigation into the dynamic effects on the track of wheelflats on railway vehicles. J. Mech. Eng. Sci. 21(4), 287–297 (1979)

    Article  Google Scholar 

  10. Knothe, K., Wu, Y.: Receptance behaviour of railway track and subgrade. Arch. Appl. Mech. 68(7–8), 457–470 (1998)

    Article  Google Scholar 

  11. Meacham, H., Ahlbeck, D.: A computer study of dynamic loads caused by vehicle–track interaction. J. Eng. Ind. 91(3), 808–816 (1969)

    Article  Google Scholar 

  12. Diana, G., Cheli, F., Bruni, S., Collina, A.: Dynamic interaction between rail vehicles and track for high speed train. Veh. Syst. Dyn. 24(sup1), 15–30 (1995)

    Article  Google Scholar 

  13. Ripke, B., Knothe, K.: Simulation of high frequency vehicle–track interactions. Veh. Syst. Dyn. 24(sup1), 72–85 (1995)

    Article  Google Scholar 

  14. Grassie, S.L.: Models of railway track and vehicle/track interaction at high frequencies: results of benchmark test. Veh. Syst. Dyn. 25(S1), 243–262 (1996)

    Article  Google Scholar 

  15. Fröhling, R.D.: Low frequency dynamic vehicle/track interaction: modelling and simulation. Veh. Syst. Dyn. 29(S1), 30–46 (1998)

    Article  Google Scholar 

  16. Nielsen, J.C., Lundén, R., Johansson, A., Vernersson, T.: Train–track interaction and mechanisms of irregular wear on wheel and rail surfaces. Veh. Syst. Dyn. 40(1–3), 3–54 (2003)

    Article  Google Scholar 

  17. Knothe, K., Grassie, S.: Modelling of railway track and vehicle/track interaction at high frequencies. Veh. Syst. Dyn. 22(3–4), 209–262 (1993)

    Article  Google Scholar 

  18. Zhai, W., Cai, C., Guo, S.: Coupling model of vertical and lateral vehicle/track interactions. Veh. Syst. Dyn. 26(1), 61–79 (1996)

    Article  Google Scholar 

  19. Zhai, W., Cai, Z.: Dynamic interaction between a lumped mass vehicle and a discretely supported continuous rail track. Comput. Struct. 63(5), 987–997 (1997)

    Article  Google Scholar 

  20. Zhai, W., Sun, X.: A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 23(S1), 603–615 (1994)

    Article  Google Scholar 

  21. Sun, Y.Q., Dhanasekar, M.: A dynamic model for the vertical interaction of the rail track and wagon system. Int. J. Solids Struct. 39(5), 1337–1359 (2002)

    Article  Google Scholar 

  22. Zhai, W., Wang, Q., Lu, Z., Wu, X.: Dynamic effects of vehicles on tracks in the case of raising train speeds. Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit 215(2), 125–135 (2001)

    Article  Google Scholar 

  23. Zakeri, J.A., Xia, H.: Sensitivity analysis of track parameters on train–track dynamic interaction. J. Mech. Sci. Technol. 22(7), 1299–1304 (2008)

    Article  Google Scholar 

  24. Galvín, P., Romero, A., Domínguez, J.: Fully three-dimensional analysis of high-speed train–track–soil-structure dynamic interaction. J. Sound Vib. 329(24), 5147–5163 (2010)

    Article  Google Scholar 

  25. Kumaran, G., Menon, D., Krishnannair, K.: Dynamic studies of railtrack sleepers in a track structure system. J. Sound Vib. 268(3), 485–501 (2003)

    Article  Google Scholar 

  26. Popp, K., Kaiser, I., Kruse, H.: System dynamics of railway vehicles and track. Arch. Appl. Mech. 72(11–12), 949–961 (2003)

    Google Scholar 

  27. Johansson, A., Nielsen, J.C.O.: Rail corrugation growth—influence of powered wheelsets with wheel tread irregularities. Wear 262(11–12), 1296–1307 (2007)

    Article  Google Scholar 

  28. Jin, X., Wen, Z., Wang, K.: Effect of track irregularities on initiation and evolution of rail corrugation. J. Sound Vib. 285(1), 121–148 (2005)

    Article  Google Scholar 

  29. Grassie, S., Kalousek, J.: Rail corrugation: characteristics, causes and treatments. Proc. Inst. Mech. Eng. F: J. Rail Rapid Transit 207(1), 57–68 (1993)

    Article  Google Scholar 

  30. Karttunen, K., Kabo, E., Ekberg, A.: The influence of track geometry irregularities on rolling contact fatigue. Wear 314(1–2), 78–86 (2014)

    Article  Google Scholar 

  31. Naeimi, M., Zakeri, J.A., Esmaeili, M., & Shadfar, M.: Influence of uneven rail irregularities on the dynamic response of railway track using a three dimensional model of the vehicle–track system. Veh. Syst. Dyn. (2015). doi:10.1080/00423114.2014.998243

  32. Hou, K., Kalousek, J., Dong, R.: A dynamic model for an asymmetrical vehicle/track system. J. Sound Vib. 267(3), 591–604 (2003)

    Article  Google Scholar 

  33. Jin, X.S., Wen, Z.F., Wang, K.Y., et al.: Three-dimensional train–track model for study of rail corrugation. J. Sound Vib. 293(3–5), 830–855 (2006)

    Article  Google Scholar 

  34. Xu, Y.L., Ding, Q.S.: Interaction of railway vehicles with track in cross-winds. J. Fluids Struct. 22(3), 295–314 (2006)

    Article  MathSciNet  Google Scholar 

  35. Zakeri, J.A., Xia, H., Fan, J.J.: Dynamic responses of train–track system to single rail irregularity. Latin Am. J. Solids Struct. 6(2), 89–104 (2009)

  36. Naeimi, M.: Dynamic response of sleepers in railway track, in Department of Railway Engineering. Master thesis. Iran University of Science and Technology, Tehran, Iran (2010)

  37. Dinh, V.N., Kim, K.D., Warnitchai, P.: Dynamic analysis of three-dimensional bridge-high-speed train interactions using a wheel–rail contact model. Eng. Struct. 31(12), 3090–3106 (2009)

    Article  Google Scholar 

  38. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering, vol. 3. Prentice Hall, Englewood Cliffs, NJ (1995)

    Google Scholar 

  39. Kalker, J.J.: Survey of wheel–rail rolling-contact theory. Veh. Syst. Dyn. 8(4), 317–358 (1979)

    Article  Google Scholar 

  40. Yang, B.: Dynamics and control of Euler–Bernoulli beams. In: Yang, B. (ed.) Stress, Strain, and Structural Dynamics, pp. 521–615. Academic Press, Burlington (2005)

    Chapter  Google Scholar 

  41. Ames, W.F., Ames, W.: Nonlinear Partial Differential Equations in Engineering, vol. 2. Academic Press, New York (1972)

    Google Scholar 

  42. Morton, K., Mayers, D.: Numerical Solution of Partial Differential Equations: An Introduction, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  43. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-Heinemann, Oxford, MA (2000)

    Google Scholar 

  44. Mohammadzadeh, S., Ahadi, S., Keshavarzian, H.: Assessment of fracture reliability analysis of crack growth in spring clip type Vossloh SKL14. Proc. Inst. Mech. Eng. O: J. Risk Reliab. (2014). doi:10.1177/1748006X14527926

  45. Metrikine, A., Popp, K.: Steady-state vibrations of an elastic beam on a visco-elastic layer under moving load. Arch. Appl. Mech. 70(6), 399–408 (2000)

    Article  Google Scholar 

  46. Zhai, W.M., Wang, K.Y., Lin, J.H.: Modelling and experiment of railway ballast vibrations. J. Sound Vib. 270(4–5), 673–683 (2004)

    Article  Google Scholar 

  47. Zhang, S., Xiao, X., Wen, Z., Jin, X.: Effect of unsupported sleepers on wheel/rail normal load. Soil Dyn. Earthq. Eng. 28(8), 662–673 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is the part of the M.S. Thesis of the first author. Our gratitude is given to Iranian Railway Research Centre for providing accessibility to particular samples of rail profile measurement data in Iranian Railway Network. This research was undertaken in the School of Railway Engineering, Iran University of Science and Technology (IUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Naeimi.

Appendices

Appendix 1: Equations of the vehicle [31, 37]

Vertical motion of the car-body:

$$\begin{aligned} M_{Y}^{c} \ddot{Y}^{c} + 2c_{{2Yj}} \dot{Y}^{c} - 2c_{{2Yj}} \dot{Y}_{j}^{b} + 2k_{{2Yj}} Y^{c} - 2k_{{2Yj}} Y_{j}^{b} = 0,\quad j = f,r \end{aligned}$$
(14)

Pitching motion of the car-body:

$$\begin{aligned} J_{Z}^{c} \ddot{R}_{Z}^{c} + 2s_{j}^{2} c_{{2Yj}} \dot{R}_{Z}^{c} + 2s_{j}^{2} k_{{2Yj}} R_{Z}^{c} = 0,\quad j = f,r. \end{aligned}$$
(15)

Rolling motion of the car-body:

$$\begin{aligned}&J_{X}^{c} \ddot{R}_{X}^{c} + 2\left( b_{{2j}}^{2} c_{{2Yj}} + h_{{1j}}^{2} c_{{2Zj}} \right) \dot{R}_{X}^{c} + \left( 2h_{{1j}} h_{{2j}} c_{{2Zj}} - 2b_{{2j}}^{2} c_{{2Yj}} \right) \dot{R}_{{Xj}}^{b}\nonumber \\&\qquad + 2\left( b_{{2j}}^{2} k_{{2Yj}} + h_{{1j}}^{2} k_{{2Zj}} \right) R_{X}^{c} + \left( 2h_{{1j}} h_{{2j}} k_{{2Zj}} - 2b_{{2j}}^{2} k_{{2Yj}} \right) R_{{Xj}}^{b} = 0,\quad j = f,r \end{aligned}$$
(16)

Vertical motion of the jth bogie:

$$\begin{aligned}&M_{{Yj}}^{b} \ddot{Y}_{j}^{b} + \left( 2c_{{2Yj}} + 4c_{{1Yj}} \right) \dot{Y}_{j}^{b} - 2c_{{2Yj}} \dot{Y}^{c} + ( - 1)^{j} 2s_{j} c_{{2Yj}} \dot{R}_{Z}^{c} \nonumber \\&\qquad - 2c_{{1Yj}} \dot{Y}_{{jk}}^{w} + \left( 2k_{{2Yj}} + 4k_{{1Yj}} \right) Y_{j}^{b} - 2k_{{2Yj}} Y^{c} + ( - 1)^{j} 2s_{j} k_{{2Yj}} R_{Z}^{c} = 0 \nonumber \\&\qquad j = f,r,\quad k = 1,2 \end{aligned}$$
(17)

Pitching motion of the jth bogie:

$$\begin{aligned} J_{{Zj}}^{b} \ddot{R}_{{Zj}}^{b} + 4t_{j}^{2} c_{{1Yj}} \dot{R}_{{Zj}}^{b} + ( - 1)^{k} 2t_{j} c_{{1Yj}} \dot{Y}_{{jk}}^{w} + 4t_{j}^{2} k_{{1Yj}} R_{{Zj}}^{b} + ( - 1)^{k} 2t_{j} k_{{1Yj}} Y_{{jk}}^{w} = 0. \end{aligned}$$
(18)

Rolling motion of the jth bogie:

$$\begin{aligned}&J_{{Xj}}^{b} \ddot{R}_{{Xj}}^{b} + \left( 2b_{{2j}}^{2} c_{{2Yj}} + 2h_{{2j}}^{2} c_{{2Zj}} + 4h_{{3j}}^{2} c_{{1Zj}} + 4b_{{1j}}^{2} c_{{1Yj}} \right) \dot{R}_{{Xj}}^{b} + 2\left( h_{{1j}} h_{{2j}} c_{{2Zj}} - b_{{2j}}^{2} c_{{2Yj}} \right) \dot{R}_{X}^{c} \nonumber \\&\qquad - 2b_{{1j}}^{2} c_{{1Yj}} \dot{R}_{{Xjk}}^{w} + \left( 2b_{{2j}}^{2} k_{{2Yj}} + 2h_{{2j}}^{2} k_{{2Zj}} + 4h_{{3j}}^{2} k_{{1Zj}} + 4b_{{1j}}^{2} k_{{1Yj}}\right) R_{{Xj}}^{b} \nonumber \\&\qquad -2\left( h_{{1j}} h_{{2j}} k_{{2Zj}} - b_{{2j}}^{2} k_{{2Yj}} \right) R_{X}^{c} - 2b_{{1j}}^{2} k_{{1Yj}} R_{{Xjk}}^{w} = 0,\quad j = f,r,\;\; k = 1,2 \end{aligned}$$
(19)

Vertical motion of the kth wheelset:

$$\begin{aligned}&M_{{Y,jk}}^{w} \ddot{Y}_{{jk}}^{w} + 2c_{{1Y}} \dot{Y}_{{jk}}^{w} - 2c_{{1Y}} \dot{Y}_{j}^{b} + ( - 1)^{k} 2c_{{1Y}} t_{{jk}} \dot{R}_{{Zj}}^{b} + 2k_{{1Y}} Y_{{jk}}^{w} - 2k_{{1Y}} Y_{j}^{b} \nonumber \\&\qquad + ( - 1)^{k} 2k_{{1Y}} t_{{jk}} R_{{Zj}}^{b} = F_{{Y,jk}}^{{w - r}} . \end{aligned}$$
(20)

Rolling motion of the kth wheelset:

$$\begin{aligned} J_{X}^{w} \ddot{R}_{{Xjk}}^{w} + 2c_{{1Y}} b_{1}^{2} \dot{R}_{{Xjk}}^{w} - 2c_{{1Y}} b_{1}^{2} \dot{R}_{{Xj}}^{b} + 2k_{{1Y}} b_{1}^{2} R_{{Xjk}}^{w} - 2k_{{1Y}} b_{1}^{2} R_{{Xj}}^{b} = M_{{X,jk}}^{{w - r}} \end{aligned}$$
(21)

Matrix-form equation of the entire vehicle:

$$\begin{aligned}{}[M^{v} ]\{ \ddot{U}^{v} \} + [C^{v}]\{\dot{U}^{v} \} + [K^{v} ]\{ U^{v} \} = \{ F^{v} \} \end{aligned}$$
(22)

Displacement vector of the car-body:

$$\begin{aligned} \{ U^{v} \} = \left\langle \begin{array}{lllllll} {u_{{f1}}^{w} } &{} \;\; {u_{{f2}}^{w} } &{} \;\; {u_{f}^{b} } &{}\;\; {u^{c} } &{}\;\; {u_{r}^{b} } &{}\;\; {u_{{r1}}^{w} } &{}\;\; {u_{{r2}}^{w} } \\ \end{array}\right\rangle ^{\mathrm{T}}_{(17,1)} . \end{aligned}$$
(23)

Mass matrix of the vehicle:

$$\begin{aligned}{}[M^{v} ] = \hbox {diag}\left[ \begin{array}{ccccccc} {M_{{f1}}^{w} } &{}\;\; {M_{{f2}}^{w} } &{}\;\; {M_{f}^{b} } &{}\;\; {M^{c} } &{}\;\; {M_{r}^{b} } &{}\;\; {M_{{r1}}^{w} } &{}\;\; {M_{{r2}}^{w} } \\ \end{array} \right] \end{aligned}$$
(24)

Stiffness matrix of the vehicle:

$$\begin{aligned}{}[K^v ]=\left[ {\begin{array}{ccccccc} {K_{f1}^w }&{}\;\; 0&{}\;\; {K_{f1}^{wb} }&{}\;\; 0&{}\;\; 0&{}\;\; 0&{}\;\; 0 \\ &{}\;\; {K_{f2}^w }&{}\;\; {K_{f2}^{wb} }&{}\;\; 0&{}\;\; 0&{}\;\; 0&{}\;\; 0 \\ &{} &{}\;\; {K_f^b }&{}\;\; {K_f^{bc} }&{}\;\; 0&{}\;\; 0&{}\;\; 0 \\ &{} &{} &{}\;\; {K^c }&{}\;\; {K_r^{bc} }&{}\;\; 0&{}\;\; 0 \\ &{} &{} &{} &{}\;\; {K_r^b }&{}\;\; {K_{r1}^{wb} }&{}\;\; {K_{r2}^{wb} } \\ &{} &{} &{} &{} &{}\;\; {K_{r1}^w }&{}\;\; 0 \\ {\hbox {sym.}}&{} &{} &{} &{} &{} &{}\;\; {K_{r2}^w } \\ \end{array} } \right] \end{aligned}$$
(25)

External dynamic force vector of the vehicle:

$$\begin{aligned} \left\{ F^v \right\} = \left\langle {\begin{array}{lllllll} {F_{f1}^w }&{}\;\; {F_{f2}^w }&{}\;\; {F_f^b }&{}\;\; {F^c }&{}\;\; {F_r^b }&{}\;\; {F_{r1}^w }&{}\;\; {F_{r2}^w } \\ \end{array} }\right\rangle _{(17,1)}^{\mathrm{T}} \end{aligned}$$
(26)

Effective force vectors in the integration problem of this study:

$$\begin{aligned} \left\{ F^{c} \right\}= & {} \{ 0\} \quad \hbox {and} \quad \left\{ F_{j}^{b} \right\} = \{0\}\nonumber \\ \left\{ F_{{jk}}^{w} \right\}= & {} \left\{ F_{{jk}}^{{w - r}} \right\} = \left\langle {M_{X}^{{w - r}} }\;\; {F_{Y}^{w - r}} \right\rangle _{{jk}}^{\mathrm{T}} \end{aligned}$$
(27)

Appendix 2: Equations of the track [31, 47]

Vertical/bending motion of the rail beam:

$$\begin{aligned} m^{r} \frac{{\partial ^{2} y^{r} (x,t)}}{{\partial t^{2} }} = \sum \limits _{N_{\mathrm{w}} }^{{j = 1}} F_{\mathrm{wr}zj} (t)\delta (x - x_{\mathrm{w}_{j} } )\rho ^{r} I_{y} ^{r} \frac{{\partial ^{2} R_{z}^{r} (x,t)}}{{\partial t^{2} }} - EI_{y} \frac{{\partial ^{4} R_{z}^{r} (x,t)}}{{\partial x^{4} }} = 0 \end{aligned}$$
(28)

Torsional motion (rolling) of the rail beam:

$$\begin{aligned} \rho ^{r}I_0^{r}\frac{\partial ^{2}R_x^r (x,t)}{\partial t^{2}}=-\sum \limits _{N_\mathrm{s} }^{i=1} M_{\mathrm{s}i} (t)\delta \times (x-x_{\mathrm{s}i} )+\sum \limits _{N_\mathrm{w} }^{j=1} M_{\mathrm{G}j} (t)\delta (x-x_{\mathrm{w}_j } ) \end{aligned}$$
(29)

Rail beam shape functions for deflection, bending and torsion (20 mode functions were superposed):

$$\begin{aligned} y^{r}(x,t)= & {} \sum \limits _{20}^{k=1} Y_k^{r}(x)q_{yk}^{r}(t)\qquad Y_k^{r}(x)=\sqrt{\frac{2}{m^{r}l_e^r }}\sin \left( \frac{k\pi }{l_e^r }x\right) \nonumber \\ r_z^r (x,t)= & {} \sum \limits _{20}^{k=1} R_{zk}^{r}(x)w_{zk}^{r}(t)\qquad R_{zk}^{r}(x)=\sqrt{\frac{2}{\rho I_z^{r}l_e^r }}\cos \left( \frac{k\pi }{l_e^r }x\right) \nonumber \\ r_x^r (x,t)= & {} \sum \limits _{20}^{k=1} R_{xk}^{r}(x)q_{\mathrm{x}k}^{r}(t)\qquad R_{xk}^{r}(x)=\sqrt{\frac{2}{\rho I_0^{r}l_e^r }}\sin \left( \frac{k\pi }{l_e^r }x\right) \end{aligned}$$
(30)

Vertical/bending motion of the sleeper beam (z is the major axis of the sleeper):

$$\begin{aligned} m^{s}\frac{\partial ^{2}y^{s}(z,t)}{\partial t^{2}}= \sum \limits _{N_\mathrm{r} (2)}^{j=1} F_{\mathrm{rs}zj} (t)\delta (z-z_{\mathrm{w}_j } )\rho ^{s}I_z^{s}\frac{\partial ^{2}R_x^s (z,t)}{\partial t^{2}}-E^{s}I_z^{s}\frac{\partial ^{4}R_x^s (z,t)}{\partial z^{4}}=0 \end{aligned}$$
(31)

Sleeper beam shape functions for deflection, bending and torsion (20 mode functions were superposed):

$$\begin{aligned} y^{s}(z,t)= & {} \sum \limits _{20}^{k=1} Y_k^{s}(z)q_{yk}^{s}(t)\qquad Y_k^{s}(z)=\sqrt{\frac{2}{m^{s}l_e^s }}\sin \left( \frac{k\pi }{l_e^s }z\right) \nonumber \\ r_x^s (z,t)= & {} \sum \limits _{20}^{k=1} R_{xk}^{s}(x)q_{\mathrm{x}k}^{s}(t)\qquad R_{xk}^{s}(z)=\sqrt{\frac{2}{\rho ^{s}I_0^{s}l_e^s }}\sin \left( \frac{k\pi }{l_e^s }z\right) \end{aligned}$$
(32)

Dynamic equilibrium of the ith ballast block in vertical motion:

$$\begin{aligned}&M_{{Yij}}^{{bl}} \ddot{Y}_{{ij}}^{{bl}} + (c_{{bYij}} + 2c_{{fYij}} )\dot{Y}_{{ij}}^{{bl}} - c_{{bYij}} \dot{Y}_{{ij}}^{r} + (k_{{bYij}} + 2k_{{fYij}} )Y_{{ij}}^{{bl}} \nonumber \\&\qquad - k_{{bYij}} Y_{{ij}}^{r} = 0,\quad i = 1,2,\ldots ,N_{s} ,\;\; j = 1,2,\ldots ,5 \end{aligned}$$
(33)

Mass matrix of the rail and sleeper elements:

$$\begin{aligned} \left[ M^{r/s} \right] =\frac{m.l_e^{r/s}}{420}\left[ { \begin{array}{llll} {156}&{}\quad {22l_e^{r/s} }&{}\quad {54}&{}\quad {-13l_e^{r/s} } \\ {22l_e^{r/s} }&{}\quad {4l_e^{r/s2}}&{}\quad {13l_e^{r/s} }&{}\quad {-3l_e^{r/s2}} \\ {54}&{}\quad {13l_e^{r/s} }&{}\quad {2l_e^{r/s2}}&{}\quad {-22l_e^{r/s} } \\ {-13l_e^{r/s} }&{}\quad {-3l_e^{r/s2}}&{}\quad {-22l_e^{r/s} }&{}\quad {4l_e^{r/s2}} \\ \end{array} } \right] \end{aligned}$$
(34)

Stiffness matrix of the rail and sleeper elements:

$$\begin{aligned} \left[ K^{r/s} \right] =\frac{2E^{r/s}I^{r/s}}{l_e^{r/s3}}\left[ {{\begin{array}{cccc} 6&{} {-6}&{} {3l_e^{r/s} }&{} {3l_e^{r/s} } \\ {-6}&{} 6&{} {-3l_e^{r/s} }&{} {-3l_e^{r/s} } \\ {3l_e^{r/s} }&{} {-3l_e^{r/s} }&{} {2l_e^{r/s2}}&{} {l_e^{r/s2}} \\ {3l_e^{r/s} }&{} {-3l_e^{r/s} }&{} {l_e^{r/s2}}&{} {2l_e^{r/s2}} \\ \end{array} }} \right] \end{aligned}$$
(35)

Damping matrix of the jth rail and sleeper beams, Rayleigh damping

$$\begin{aligned} C_j^{r/s} =\alpha M_j^{r/s} +\beta K_j^{r/s} \end{aligned}$$
(36)

Mass matrices of the entire ballast elements (The entire ballast mass divided to five separate blocks) (Table 4):

$$\begin{aligned} \left[ M_j^{Bl} \right] =\left[ {{\begin{array}{cccc} {M_1^{bl} }&{} 0&{} \cdots &{} 0 \\ 0&{} {M_2^{bl} }&{} \cdots &{} 0 \\ \cdot &{} \cdot &{} \cdot &{} \cdot \\ \cdot &{} \cdot &{} \cdot &{} \cdot \\ \cdot &{} \cdot &{} \cdot &{} \cdot \\ 0&{} 0&{} \cdots &{} {M_{N_s }^{bl} } \\ \end{array} }} \right] , \;\; j=1,2,\ldots ,5 \end{aligned}$$
(37)

Manipulating configurations of the track matrices:

$$\begin{aligned} \left[ M^{T}\right] =\left[ {{\begin{array}{lll} {[M^{r}]}&{} \quad {[M^{r}/M^{s}]}&{} \quad 0 \\ {[M^{r}/M^{s}]}&{} \quad {[M^{s}]}&{} \quad {[M^{s}/M^{bl}]} \\ 0&{} \quad {[M^{s}/M^{bl}]}&{} \quad {[M^{bl}]} \\ \end{array} }} \right] \end{aligned}$$
(38)

Equation of motion of the entire track:

$$\begin{aligned} \left[ M^{t} \right] \{ \ddot{U}^{t} \} + [C^{t} ]\{ \dot{U}^{t} \} + [K^{t} ]\{ U^{t} \} = \{ F^{t} \} \end{aligned}$$
(39)
Table 4 Notations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeimi, M., Zakeri, J.A., Esmaeili, M. et al. Dynamic response of sleepers in a track with uneven rail irregularities using a 3D vehicle–track model with sleeper beams. Arch Appl Mech 85, 1679–1699 (2015). https://doi.org/10.1007/s00419-015-1012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1012-9

Keywords

Navigation