Skip to main content
Log in

Partial contact in two-layered piezoelectric structure with interface occupying periodic profiles

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present article establishes a partial contact model to reveal how the contact strength of two piezoelectric materials is influenced by the wavy surface topography. General solutions of governing equations of the piezoelectric materials are presented. Dual series equations are obtained and solved by considering the Werner formulas and Mehler integral. For evaluating various stresses and electric displacements, the related explicit expressions are presented. Numerical tests are conducted to examine in what way the external loading and the piezoelectric coefficient ratio affect the contact performances between two piezoelectric materials. Results delineate that the external loading has a bigger contribution on forming the contact region between two different piezoelectric materials compared with the piezoelectric coefficient ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hills, D.A., Nowell, D., Sackfield, A.: Mechanics of Elastic Contacts. Butterworth-Heinemann, Oxford (1993)

    Google Scholar 

  2. Barber, J.R., Ciavarella, M.: Contact mechanics. Int. J. Solids Struct. 37, 29–43 (2000)

    Article  MathSciNet  Google Scholar 

  3. Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sijthoff and Noordhof, The Netherlands (1980)

    Book  Google Scholar 

  4. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  5. Tichy, J.A., Meyer, D.M.: Review of solid mechanics in tribology. Int. J. Solids Struct. 37, 391–400 (2000)

    Article  MathSciNet  Google Scholar 

  6. Yastrebov, V.A., Anciaux, G., Molinari, J.F.: Contact between representative rough surfaces. Phys. Rev. E 86, 035601(R) (2012)

    Article  Google Scholar 

  7. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295, 300–319 (1966)

    Article  Google Scholar 

  8. Thomas, T.R.: Rough Surfaces, 2nd edn. Imperial College Press, Cambridge (1999)

    Google Scholar 

  9. Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)

    Article  Google Scholar 

  10. Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572 (2008)

    Article  Google Scholar 

  11. Paggi, M., Ciavarella, M.: The coefficient of proportionality k between real contact area and load, with new asperity models. Wear 268, 1020–1029 (2010)

    Article  Google Scholar 

  12. Dundurs, J., Tsai, K.C., Keer, L.M.: Contact between elastic bodies with wavy surfaces. J. Elast. 3, 109–115 (1973)

    Article  Google Scholar 

  13. Jin, C.R., Khare, K., Vajpayee, S., Yang, S., Jagota, A., Hui, C.Y.: Adhesive contact between a rippled elastic surface and a rigid spherical indenter: from partial to full contact. Soft Matter 7, 10728–10736 (2011)

    Article  Google Scholar 

  14. Jin, F., Guo, X.: Mechanics of axisymmetric adhesive contact of rough surfaces involving power-law graded materials. Int. J. Solids Struct. 50, 3375–3386 (2013)

    Article  Google Scholar 

  15. Yao, Y., Chen, S.H.: The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites. J. Compos. Mater. 0(0), 1–15 (2015)

    Google Scholar 

  16. Lezgy-Nazargah, M., Vidal, P., Polit, O.: An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams. Compos. Struct. 104, 71–84 (2013)

    Article  Google Scholar 

  17. Fan, H., Sze, K.Y., Yang, W.: Two-dimensional contact on a piezoelectric half-space. Int. J. Solids Struct. 33, 1305–1315 (1996)

    Article  MathSciNet  Google Scholar 

  18. Hao, T.H.: Exact solution of a flat smooth punch on a piezoelectric half plane. Mech. Res. Commun. 30, 455–461 (2003)

    Article  Google Scholar 

  19. Wang, B.L., Han, J.C.: A circular indenter on a piezoelectric layer. Arch. Appl. Mech. 76, 367–379 (2006)

    Article  Google Scholar 

  20. Zhou, Y.T., Lee, K.Y.: Theory of moving contact of anisotropic piezoelectric materials via real fundamental solutions approach. Eur. J. Mech. A. Solids 35, 22–36 (2012)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Y.T., Zhong, Z.: Frictional indentation of anisotropic magneto-electro-elastic materials by a rigid indenter. J. Appl. Mech. Trans. ASME 81, 071001 (2014)

    Article  Google Scholar 

  22. Ma, J., Ke, L.L., Wang, Y.S.: Electro-mechanical sliding frictional contact of a piezoelectric half-plane under a rigid conducting punch. Appl. Math. Model. 38, 5471–5489 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, B.L., Han, J.C., Du, S.Y., Zhang, H.Y., Sun, Y.G.: Electromechanical behavior of a finite piezoelectric layer under a flat punch. Int. J. Solids Struct. 45, 6384–6398 (2008)

    Article  Google Scholar 

  24. Guo, X., Jin, F.: A generalized JKR-model for two-dimensional adhesive contact of transversely isotropic piezoelectric half-space. Int. J. Solids Struct. 46, 3607–3619 (2009)

    Article  Google Scholar 

  25. Ke, L.L., Yang, J., Kitipornchai, S., Wang, Y.S.: Frictionless contact analysis of a functionally graded piezoelectric layered half-plane. Smart Mater. Struct. 17, 025003 (2008)

    Article  Google Scholar 

  26. Ke, L.L., Yang, J., Kitipornchai, S., Wang, Y.S.: Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch. Int. J. Solids Struct. 45, 3313–3333 (2008)

    Article  Google Scholar 

  27. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane. Acta Mech. 209, 249–268 (2010)

    Article  Google Scholar 

  28. Maceri, F., Bisegna, P.: The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Model. 28, 19–28 (1998)

    Article  MathSciNet  Google Scholar 

  29. Bisegna, P., Lebon, F., Maceri, F.: The unilateral frictional contact of a piezoelectric body with a rigid support. In: Martins, J.A.C., Monteiro Marques, M.D.P. (eds.) Contact Mechanics, pp. 347–354. Kluwer, Dordrecht (2002)

    Chapter  Google Scholar 

  30. Barboteu, M., Fernández, J.R., Tarraf, R.: Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput. Methods Appl. Mech. Eng. 197, 3724–3732 (2008)

    Article  Google Scholar 

  31. Migórski, S., Ochal, A., Sofonea, M.: Analysis of a quasistatic contact problem for piezoelectric materials. J. Math. Anal. Appl. 382, 701–713 (2011)

    Article  MathSciNet  Google Scholar 

  32. Barboteu, M., Sofonea, M.: Modelling of piezoelectric contact problems. In: Stavroulakis, G.E. (ed.) Recent Advances in Contact Mechanics. Springer, Berlin (2013)

    Google Scholar 

  33. Sofonea, M., Kazmi, K., Barboteu, M., Han, W.M.: Analysis and numerical solution of a piezoelectric frictional contact problem. Appl. Math. Model. 36, 4483–4501 (2012)

    Article  MathSciNet  Google Scholar 

  34. Migórski, S., Ochal, A., Sofonea, M.: History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics. Nonlinear Anal. 12, 3384–3396 (2011)

    Article  Google Scholar 

  35. Sofonea, M., Matei, A.: History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22, 471–491 (2011)

    Article  MathSciNet  Google Scholar 

  36. Migórski, S., Ochal, A., Sofonea, M.: Analysis of a piezoelectric contact problem with subdifferential boundary condition. Proc. R. Soc. Edinb. 144A, 1007–1025 (2014)

    Article  Google Scholar 

  37. Zhou, Y.T., Zhong, Z.: Application of dual series equations approach to wavy contact between piezoelectric materials and an elastic solid. Int. J. Appl. Mech. 6, 1450046 (2014)

    Article  Google Scholar 

  38. Suzuki, Y., Kagawa, Y.: Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators. Smart Mater. Struct. 21, 125006 (2012)

    Article  Google Scholar 

  39. Tolliver, L., Xu, T.B., Jiang, X.N.: Finite element analysis of the piezoelectric stacked-HYBATS transducer. Smart Mater. Struct. 22, 035015 (2013)

    Article  Google Scholar 

  40. Kulikov, G.M., Plotnikova, S.V.: Exact electroelastic analysis of functionally graded piezoelectric shells. Int. J. Solids Struct. 51, 13–25 (2014)

    Article  Google Scholar 

  41. Li, Y.D., Lee, K.Y.: Effects of finite dimension on the electro-elastic responses of an interface electrode in a piezoelectric actuator. ZAMM 90, 42–52 (2010)

    Article  MathSciNet  Google Scholar 

  42. Ramirez, G., Heyliger, P.: Frictionless contact in a layered piezoelectric half-space. Smart Mater. Struct. 12, 612–625 (2003)

    Article  Google Scholar 

  43. Ramirez, G.: Frictionless contact in a layered piezoelectric media characterized by complex eigenvalues. Smart Mater. Struct. 15, 1287–1295 (2006)

    Article  MathSciNet  Google Scholar 

  44. Loboda, V., Sheveleva, A., Lapusta, Y.: An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial. Int. J. Solids Struct. 51, 63–73 (2014)

    Article  Google Scholar 

  45. Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam (1966)

    Google Scholar 

Download references

Acknowledgments

Supports from the National Natural Science Foundation of China (11472193, 11090334 and 11261045), Shanghai Pujiang Program (14PJ1409100) and the Fundamental Research Funds for the Central Universities (1330219140) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhong.

Appendix

Appendix

  1. 1.

    Expressions of the elements of symmetrical matrix \(\mathbf{A}_j =(a_{nk}^{(j)} )_{3\times 3} (j=1,2)\) appearing in Eq. (5)

    $$\begin{aligned} a_{11}^{(j)}= & {} C_{11}^{(j)} \frac{\partial ^{2}}{\partial x^{2}}+C_{44}^{(j)} \frac{\partial ^{2}}{\partial z^{2}},\qquad a_{12}^{(j)} =\left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) \frac{\partial ^{2}}{\partial x\partial z},\nonumber \\ a_{13}^{(j)}= & {} \left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) \frac{\partial ^{2}}{\partial x\partial z}, \qquad a_{22}^{(j)} =C_{44}^{(j)} \frac{\partial ^{2}}{\partial x^{2}}+C_{33}^{(j)} \frac{\partial ^{2}}{\partial z^{2}}, \nonumber \\ a_{23}^{(j)}= & {} e_{15}^{(j)} \frac{\partial ^{2}}{\partial x^{2}}+e_{33}^{(j)} \frac{\partial ^{2}}{\partial z^{2}},\qquad a_{33}^{(j)} =-\in _{11}^{(j)} \frac{\partial ^{2}}{\partial x^{2}}-\in _{33}^{(j)} \frac{\partial ^{2}}{\partial z^{2}}. \end{aligned}$$
    (76)
  2. 2.

    Expressions of \(c_k^{(j)} (j=1,2,k=0,1,2,3)\) appearing in Eq. (6)

    $$\begin{aligned} c_0^{(j)}= & {} -C_{44}^{(j)} \left[ {\left( {e_{33}^{(j)} } \right) ^{2}+C_{33}^{(j)} \in _{33}^{(j)} } \right] ,\nonumber \\ c_1^{(j)}= & {} -C_{33}^{(j)} \left[ {C_{44}^{(j)} \in _{11}^{(j)} +\left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) ^{2}} \right] -\in _{33}^{(j)} \left[ {C_{11}^{(j)} C_{33}^{(j)} +\left( {C_{44}^{(j)} } \right) ^{2}} \right. \nonumber \\&-\left. {\left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) } \right] -e_{33}^{(j)} \left[ {2C_{44}^{(j)} e_{15}^{(j)} +C_{11}^{(j)} e_{33}^{(j)} -2\left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) \left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) } \right] , \nonumber \\ c_2^{(j)}= & {} -C_{44}^{(j)} \left[ {C_{11}^{(j)} \in _{33}^{(j)} +\left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) ^{2}} \right] -\in _{11}^{(j)} \left[ {C_{11}^{(j)} C_{33}^{(j)} +\left( {C_{44}^{(j)} } \right) ^{2}} \right. \nonumber \\&-\left. {\left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) } \right] -e_{15}^{(j)} \left[ {2C_{11}^{(j)} e_{33}^{(j)} +C_{44}^{(j)} e_{15}^{(j)} -2\left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) \left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) } \right] , \nonumber \\ c_3^{(j)}= & {} -C_{11}^{(j)} \left[ {\left( {e_{15}^{(j)} } \right) ^{2}+C_{44}^{(j)} \in _{11}^{(j)} } \right] . \end{aligned}$$
    (77)
  3. 3.

    Expressions of \(\alpha _{mn}^{(j)} (j=1,2,m,n=1,2,3)\) appearing in Eq. (7)

    $$\begin{aligned} \alpha _{11}^{(j)}= & {} \left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) \in _{11}^{(j)} +\left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) e_{15}^{(j)}, \nonumber \\ \alpha _{12}^{(j)}= & {} \left( {C_{13}^{(j)} +C_{44}^{(j)} } \right) \in _{33}^{(j)} +\left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) e_{33}^{(j)}, \end{aligned}$$
    (78)
    $$\begin{aligned} \alpha _{21}^{(j)}= & {} -C_{11}^{(j)} \in _{11}^{(j)}, \nonumber \\ \alpha _{22}^{(j)}= & {} -C_{11}^{(j)} \in _{33}^{(j)} -\left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) ^{2}-C_{44}^{(j)} \in _{11}^{(j)}, \nonumber \\ \alpha _{23}^{(j)}= & {} -C_{44}^{(j)} \in _{33}^{(j)}, \end{aligned}$$
    (79)
    $$\begin{aligned} \alpha _{31}^{(j)}= & {} -C_{11}^{(j)} e_{15}^{(j)}, \nonumber \\ \alpha _{32}^{(j)}= & {} -C_{11}^{(j)} e_{33}^{(j)} +C_{13}^{(j)} \left( {e_{15}^{(j)} +e_{31}^{(j)} } \right) ^{2}+C_{44}^{(j)} e_{31}^{(j)}, \nonumber \\ \alpha _{33}^{(j)}= & {} -C_{44}^{(j)} e_{33}^{(j)}. \end{aligned}$$
    (80)
  4. 4.

    Expressions of \(\eta _{k,xx}^{(j)}, \, \eta _{k,zz}^{(j)},\,\eta _{k,xz}^{(j)},\,\eta _{k,dx}^{(j)} \) and \(\eta _{k,dz}^{(j)}\left( {j=1,2,k=1,2,3} \right) \) appearing in Eqs. (36)–(40)

    $$\begin{aligned} \eta _{k,xx}^{(j)}= & {} -C_{11} +C_{13} \beta _{k1}^{(j)} \gamma _k^{(j)} +e_{31} \beta _{k2}^{(j)} \gamma _k^{(j)} \qquad (j=1,2), \end{aligned}$$
    (81)
    $$\begin{aligned} \eta _{k,zz}^{(j)}= & {} -C_{13} +C_{33} \beta _{k1}^{(j)} \gamma _k^{(j)} +e_{33} \beta _{k2}^{(j)} \gamma _k^{(j)} \qquad (j=1,2), \end{aligned}$$
    (82)
    $$\begin{aligned} \eta _{k,xz}^{(j)}= & {} -\left( {C_{44} \gamma _k^{(j)} +C_{44} \beta _{k1}^{(j)} +e_{15} \beta _{k2}^{(j)} } \right) \qquad (j=1,2), \end{aligned}$$
    (83)
    $$\begin{aligned} \eta _{k,dx}^{(j)}= & {} -\left( {e_{15} \gamma _k^{(j)} +e_{15} \beta _{k1}^{(j)} -\in _{11} \beta _{k2}^{(j)} } \right) \qquad (j=1,2), \end{aligned}$$
    (84)
    $$\begin{aligned} \eta _{k,dz}^{(j)}= & {} -e_{31} +e_{33} \beta _{k1}^{(j)} \gamma _k^{(j)} -\in _{33} \beta _{k2}^{(j)} \gamma _k^{(j)} \qquad (j=1,2). \end{aligned}$$
    (85)
  5. 5.

    Expressions of the elements of matrices \(\mathbf{D}_j =(d_{nk}^{(j)} )_{3\times 3} (j=1,2)\) appearing in Eq. (41)

    $$\begin{aligned} d_{1k}^{(j)} =1, d_{2k}^{(j)} =\eta _{k,zz}^{(j)}, d_{3k}^{(j)} =\eta _{k,dz}^{(j)} \quad \left( {j=1,2,k=1,2,3} \right) . \end{aligned}$$
    (86)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YT., Zhong, Z. Partial contact in two-layered piezoelectric structure with interface occupying periodic profiles. Arch Appl Mech 85, 1649–1665 (2015). https://doi.org/10.1007/s00419-015-1010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1010-y

Keywords

Navigation