Skip to main content
Log in

A hybrid method for stochastic response analysis of a vibrating structure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Revised Edition. Dover Publications, Mineola (2003)

    Google Scholar 

  2. Schenk, C.A., Schuëller, G.I.: Uncertainty Assessment of Large Finite Element Systems. Springer, Berlin (2005)

    Google Scholar 

  3. Gupta, I.D., Joshi, R.G.: Response spectrum superposition for structures with uncertain properties. J. Eng. Mech. 127(3), 233–241 (2001)

    Article  Google Scholar 

  4. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method : Basic Perturbation Technique and Computer Implementation. Wiley, New York (1992)

    Google Scholar 

  5. Cacciola, P., Colajanni, P., Muscolino, G.: A modal approach for the evaluation of the response sensitivity of structural systems subjected to non-stationary random processes. Comput. Methods Appl. Mech. Eng. 194, 4344–4361 (2005)

    Article  Google Scholar 

  6. Jensen, H., Iwan, W.D.: Response of systems with uncertain parameters to stochastic excitation. J. Eng. Mech. 118(5), 1012–1025 (1992)

    Article  Google Scholar 

  7. Katafygiotis, L.S., Papadimitriou, C.: Dynamic response variability of structures with uncertain properties. Earthq. Eng. Struct. Dyn. 25, 775–793 (1996)

    Article  Google Scholar 

  8. Shinozuka, M.: Structural response variability. J. Eng. Mech. 113(6), 825–842 (1987)

    Article  Google Scholar 

  9. Graham, L., Deodatis, G.: Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties. Probab. Eng. Mech. 16(1), 11–29 (2001)

    Article  Google Scholar 

  10. Ghosh, D.: Application of the random eigenvalue problem in forced response analysis of a linear stochastic structure. Arch. Appl. Mech. 83, 1341–1357 (2013)

    Article  Google Scholar 

  11. Nigam, N.C., Narayanan, S.: Applications of Random Vibrations. Narosa, Chennai (1994)

    Google Scholar 

  12. Spencer, B.F., Bergman, L.A.: On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  13. Er, G.: Probabilistic solutions to nonlinear random vibrations of multi-degree-of-freedom systems. Appl. Mech. 67(2), 355–359 (2000)

    Article  Google Scholar 

  14. Feuersänger, C.: An efficient sparse-grid method for the high-dimensional Fokker–Planck equation. International Congress on Industrial and Applied Mathematics (ICIAM) Zürich(2007)

  15. von Wagner, U., Wedig, W.V.: On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions. Nonlinear Dyn. 21, 289–306 (2000)

    Article  Google Scholar 

  16. Martens, W., von Wagner, U., Mehrmann, V.: Calculation of high-dimensional probability density functions of stochastically excited nonlinear mechanical systems. Nonlinear Dyn. 67, 2089–2099 (2012)

    Article  Google Scholar 

  17. Johnson, E.A., Proppe, C., Spencer Jr, B.F., Bergman, L.A., Székely, G.S., Schuëller, G.I.: Parallel processing in computational stochastic dynamics. Probab. Eng. Mech. 18, 37–60 (2003)

    Article  Google Scholar 

  18. Kozin, F.: On the probability densities of the output of some random systems. J. Appl. Mech. 28(2), 161–164 (1961)

    Article  MathSciNet  Google Scholar 

  19. Grigoriu, M.: Linear random vibration by stochastic reduced-order models. Int. J. Numer. Methods Eng. 82, 1537–1559 (2010)

    MathSciNet  Google Scholar 

  20. Xu, J., Chen, J., Li, J.: Probability density evolution analysis of engineering structures via cubature points. Comput. Mech. 50, 135–156 (2012)

    Article  MathSciNet  Google Scholar 

  21. Igusa, T., Der Kiureghian, A.: Response of uncertain systems to stochastic excitation. J. Eng. Mech. 114(5), 812–832 (1988)

    Article  Google Scholar 

  22. Gong, G., Dunne, J.F.: Efficient exceedance probability computation for randomly uncertain nonlinear structures with periodic loading. J. Sound Vib. 330, 2354–2368 (2011)

    Article  Google Scholar 

  23. Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16, 263–277 (2001)

    Article  Google Scholar 

  24. Chevreuil, M., Nouy, A.: Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int. J. Numer. Methods Eng. 89, 241–268 (2012)

    Article  MathSciNet  Google Scholar 

  25. Nair, P.B.: Stochastic subspace projection schemes for dynamic analysis of uncertain systems. In: Proceedings of the IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, Russia, 5–9 July (2009)

  26. Schuëller, G.I., Pradlwarter, H.J.: Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches. Eng. Struct. 31, 2507–2517 (2009)

    Article  Google Scholar 

  27. Goller, B., Pradlwarter, H.J., Schuëller, G.I.: Reliability assessment in structural dynamics. J. Sound Vib. 332, 2488–2499 (2013)

    Article  Google Scholar 

  28. Abbas, A.M., Manohar, C.S.: Reliability-based critical earthquake load models. Part 1: linear structures. J. Sound Vib. 28, 865–882 (2005)

    Article  Google Scholar 

  29. Zentner, I., Poirion, F.: Enrichment of seismic ground motion databases using Karhunen-Loéve expansion. Earthq. Eng. Struct. Dyn. (2012). doi:10.1002/eqe.2166

  30. Ghanem, R., Ghosh, D.: Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int. J. Numer. Methods Eng. 72(4), 486–504 (2007)

    Article  MathSciNet  Google Scholar 

  31. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)

    Google Scholar 

  32. Shinozuka, M., Astill, C.J.: Random eigenvalue problems in structural analysis. AIAA J. 10(4), 456–462 (1972)

    Article  Google Scholar 

  33. Hasselman, T.: Quantification of uncertainty in structural dynamics models. J. Aerosp. Eng. 14(4), 158–165 (2001)

    Article  Google Scholar 

  34. Vom Scheidt, J., Purkert, W.: Random Eigenvalue Problems. North Holland (1983)

  35. Pradlwarter, H.J., Schuëller, G.I., Székely, G.S.: Random eigenvalue problems for large systems. Comput. Struct. 80, 2415–2424 (2002)

    Article  Google Scholar 

  36. Ghosh, D., Ghanem, R., Red-Horse, J.: Analysis of eigenvalues and modal interaction of stochastic systems. AIAA J. 43(10), 2196–2201 (2005)

    Article  Google Scholar 

  37. Verhoosel, C.V., Gutiérrez, M.A., Hulshoff, S.J.: Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems. Int. J. Numer. Methods Eng. 68(4), 401–424 (2006)

    Article  Google Scholar 

  38. Sepahvand, K., Marburg, S., Hardtke, H.-J.: Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion. J. Sound Vib. 331, 167–179 (2012)

    Article  Google Scholar 

  39. Adhikari, S.: Joint statistics of natural frequencies of stochastic dynamic systems. Comput. Mech. 40(4), 739–752 (2007)

    Article  MathSciNet  Google Scholar 

  40. Rahman, S.: Stochastic dynamic systems with complex-valued eigensolutions. Int. J. Numer. Methods Eng. 71, 963–986 (2007)

    Article  Google Scholar 

  41. Xiu, D., Karniadakis, G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  Google Scholar 

  42. Soize, C., Ghanem, R.: Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)

    Article  MathSciNet  Google Scholar 

  43. Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25(1), 111–128 (1972)

    Article  Google Scholar 

  44. Bernard, P., Fleury, G.: Stochastic newmark scheme. Probab. Eng. Mech. 17, 45–61 (2002)

    Article  Google Scholar 

  45. Tootkaboni, M., Graham-Brady, L.: Stochastic direct integration schemes for dynamic systems subjected to random excitations. Probab. Eng. Mech. 25, 163–171 (2010)

    Article  Google Scholar 

  46. Dickens, J.M., Nakagawa, J.M., Wittbrodt, M.J.: A critique of mode acceleration and modal truncation augmentation methods for modal response analysis. Comput. Struct. 62(6), 985–998 (1997)

    Article  Google Scholar 

  47. Soriano, H.L., Filho, F.V.: On the modal acceleration method in structural dynamics. Mode truncation and static correction. Comput. Struct. 29(5), 777–782 (1988)

    Article  Google Scholar 

  48. Leger, P., Wilson, E.L.: Modal summation methods for structural dynamic computations. Earthq. Eng. Struct. Dyn. 16(1), 23–27 (1988)

    Article  Google Scholar 

  49. O’Callahan, J., Li, P.: Serep expansion. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 2768, p. 1258 (1996)

  50. Cacciola, P., Maugeri, N., Muscolino, G.: A modal correction method for non-stationary random vibrations of linear systems. Probab. Eng. Mech. 22(2), 170–180 (2007)

    Article  Google Scholar 

  51. Palmeri, A., Lombardo, M.: A new modal correction method for linear structures subjected to deterministic and random loadings. Comput. Struct. 89(11), 844–854 (2011)

    Article  Google Scholar 

  52. Kamiński, M.: Stochastic perturbation approach to engineering structure vibrations by the finite difference method. J. Sound Vib. 251(4), 651–670 (2002)

    Article  Google Scholar 

  53. Sutter, T.R., Camarda, C.J., Walsh, J.L., Adelmans, H.M.: Comparison of several methods for calculating vibration mode shape derivatives. AIAA J. 26(12), 1506–1511 (1988)

    Article  Google Scholar 

  54. Hart, G.C., Collins, J.D.: The treatment of randomness in finite element modeling, SAE Shock and Vibrations Symposium, Los Angeles, CA, pp. 2509–2519, Oct (1970)

  55. Nelson, R.B.: Simplified calculation of eigenvector derivatives. AIAA J. 14(9), 1201–1205 (1976)

    Article  MathSciNet  Google Scholar 

  56. Yang, T.Y.: Finite Element Structural Analysis. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  57. Kanai, K.: Semi-empirical formula for the seismic characteristics of the ground Bull. Earthq. Res. Inst. 35, 309–324 (1957)

    Google Scholar 

  58. Tajimi, H.: Statistical method of determining the maximum response of building structure during an earthquake. Proc. of the 2nd WCEE, 2:781–798 (1960)

  59. http://www.mathworks.com/products/matlab/

  60. Shinozuka, M., Deodatis, G.: Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 44, 191 (1991)

    Article  MathSciNet  Google Scholar 

  61. Yamazaki, F., Shinozuka, M.: Simulation of stochastic fields by statistical preconditioning. J. Eng. Mech. 116(2), 268–287 (1990)

    Article  Google Scholar 

  62. Deodatis, G., Micaletti, R.C.: Simulation of highly skewed non-gaussian stochastic processes. J. Eng. Mech. 127(12), 1284–1295 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Board of Research in Nuclear Sciences (BRNS) Grant No. 2011/36/41-BRNS/1977 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Ghosh.

Appendix

Appendix

1.1 The Jacobian of the NR iterations

In this section, the analytical form of the Jacobian matrix is derived from Eqs. (13, 14). Note that these expressions are the modified forms of the expressions derived in [30], to include the mass matrix into consideration. For a given m between 0 and \(P-1\) let \(F_{m}\), denote the system of P equations in Eq. (13). Then its derivatives with respect to the components of the unknown chaos coefficients can be expressed as

$$\begin{aligned} \frac{\partial {F_{m}}}{\partial {\lambda ^{(i)}}}= & {} -\sum _{k=0}^{L_2-1}\sum _{j=0}^{P-1}{\mathbb {E}}\{\psi _i\psi _j\psi _k\psi _m\} \mathbf{M}^{(k)}{\varvec{\phi }}^{(j)} , \quad m = 0,\ldots , P-1 , \quad i = 0,\ldots , P-1, \end{aligned}$$
(30)
$$\begin{aligned} \frac{\partial {F_{m}}}{\partial {{\varvec{\phi }}^{(j)}}}= & {} \sum _{i=0}^{L_1-1}{\mathbb {E}}\{\psi _i\psi _j\psi _m\} \mathbf{K}^{(i)} - \sum _{i=0}^{P-1}\sum _{k=0}^{L_2-1}{\mathbb {E}}\{\psi _i\psi _j\psi _k\psi _m\} \lambda ^{(i)} \mathbf{M}^{(k)}, \nonumber \\ m= & {} 0,\ldots , P-1, \quad j = 0,\ldots , P-1. \end{aligned}$$
(31)

Equation (31) results in a matrix whose \((i_1,i_2)\)th term is the derivative of the \(i_1\)-th function in \(F_{m}\) with respect to the \(i_2\)-th element of \({\varvec{\phi }}^{(j)}\).

Similarly, from Eq. (14),

$$\begin{aligned}&\frac{\partial {f_m}}{\partial {\lambda ^{(j)}}}=0,\quad m = 0,\ldots , P-1 , j = 0,\ldots , P-1 ,\end{aligned}$$
(32)
$$\begin{aligned}&\frac{\partial {f_m}}{\partial {{\varvec{\phi }}^{(j)}}}=2\sum _{i=0}^{P-1}\sum _{k=0}^{L_2-1}\mathbf{M}^{(k)}{\varvec{\phi }}^{(i)}{\mathbb {E}}\{\psi _i\psi _j\psi _k\psi _m\},\quad m = 0,\ldots , P-1 , j = 0,\ldots , P-1 . \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Ghosh, D. A hybrid method for stochastic response analysis of a vibrating structure. Arch Appl Mech 85, 1607–1626 (2015). https://doi.org/10.1007/s00419-015-1007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1007-6

Keywords

Navigation