Skip to main content
Log in

Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The model of a rod fastening rotor-finite length journal bearing system is established in this paper. The contact surfaces between the disks and rods are modeled as bending resistance springs with nonlinear stiffness. The gyroscopic effect is considered in the 12 degrees-of-freedom model of the rod fastening rotor-bearing system. Based on the variational principle, an approximate analytical solution of nonlinear oil film forces of finite length journal bearing is proposed by the separation of variables method. By taking rotating speed, eccentricity and bending stiffness as control parameters, the nonlinear behaviors of the system are investigated by the improved Newmark method. The numerical results reveal periodic, period-doubling, period-4, quasi-periodic solutions etc. of rich and complex nonlinear behaviors of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, J.G., Zhou, J.Z., Dong, D.W., et al.: Nonlinear dynamic analysis of a rub-impact rotor supported by oil film bearings. Arch. Appl. Mech. 83(3), 413–430 (2013)

    Article  MATH  Google Scholar 

  2. Naïmi, S., Chouchane, M., Ligier, J.L.: Steady state analysis of a hydrodynamic short bearing supplied with a circumferential groove. C. R. Mec. 338(6), 338–349 (2010)

    Article  MATH  Google Scholar 

  3. Lahmar, M., Haddad, A., Nicolas, D.: An optimised short bearing theory for nonlinear dynamic analysis of turbulent journal bearings. Eur. J. Mech. A/Solids 19(1), 151–177 (2000)

    Article  MATH  Google Scholar 

  4. Dakel, M., Baguet, S., Dufour, R.: Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings. J. Sound Vib. 333(10), 2774–2799 (2014)

    Article  Google Scholar 

  5. Ravn, P., Shivaswamy, S., Alshaer, B.J., et al.: Joint clearances with lubricated long bearings in multibody mechanical systems. Trans. ASME J. Mech Des. 122(4), 484–488 (2000)

    Article  Google Scholar 

  6. Shah, R.C., Bhat, M.V.: Ferrofluid squeeze film in a long journal bearing. Tribol. Int. 37(6), 441–446 (2004)

    Article  Google Scholar 

  7. Alshaer, B.J., Nagarajan, H., Beheshti, H.K., et al.: Dynamics of a multibody mechanical system with lubricated long journal bearings. ASME J. Mech. Des. 127(3), 493–498 (2005)

    Article  Google Scholar 

  8. Amamou, A., Chouchane, M.: Nonlinear stability analysis of long hydrodynamic journal bearings using numerical continuation. Mech. Mach. Theory 72, 17–24 (2014)

    Article  Google Scholar 

  9. Hirani, H., Athre, K., Biswas, S.: Dynamically loaded finite length journal bearings: analytical method of solution. Trans. ASME J. Tribol. 121(4), 844–852 (1999)

    Article  Google Scholar 

  10. Bastani, Y., Queiroz, M.D.: A new analytic approximation for the hydrodynamic forces in finite-length journal bearings. Trans ASME J. Tribol. 132(1), 014502-1-9 (2010)

  11. Baguet, S., Jacquenot, G.: Nonlinear couplings in a gear-shaft-bearing system. Mech. Mach. Theory 45(12), 1777–1796 (2010)

    Article  MATH  Google Scholar 

  12. Vignolo, G.G., Barilá, D.O., Quinzani, L.M.: Approximate analytical solution to Reynolds equation for finite length journal bearings. Tribol. Int. 44(10), 1089–1099 (2011)

    Article  Google Scholar 

  13. Sfyris, D., Chasalevris, A.: An exact analytical solution of the Reynolds equation for the finite journal bearing lubrication. Tribol. Int. 55, 46–58 (2012)

    Article  Google Scholar 

  14. Buuren, S.W., Hetzler, H., Hinterkausen, M., et al.: Novel approach to solve the dynamical porous journal bearing problem. Tribol. Int. 46(1), 30–40 (2012)

    Article  Google Scholar 

  15. Zhang, S.C., Wang, A.L.: Analysis of vibration characteristics of a disk-rod-fastening rotor. J. Vib. Shock 28(4), 117–120 (2009). (in Chinese)

    Google Scholar 

  16. Li, H.G., Liu, H., Yu, L.: Nonlinear dynamic behaviors and stability of circumferential rod fastening rotor system. J. Mech. Eng. 47(23), 82–91 (2011). (in Chinese)

    Article  Google Scholar 

  17. Cheng, L., Qian, Z.W., Chen, W., et al.: Influence of structural parameters on bistable vibration characteristic of rod fastening rotor. J. Vib. Meas. Diagn. 35(2), 767–772 (2012). (in Chinese)

    Google Scholar 

  18. Hei, D.: Dynamic behaviors and stability analysis of nonlinear bearing-rotor system. Xi’an University of Technology, Xi’an (2009). (in Chinese)

    Google Scholar 

  19. Zhong, Y.E., He, Y.Z., et al.: Dynamics of the rotor. Tsinghua University Press, Beijing (1987). (in Chinese)

    Google Scholar 

  20. James, M.G., Stephen, P.T.: Mechanics of materials. PWS-Kent Publishing Company, Boston (1997)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 51375380), Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China (Grant No. SV2014-KF-08), Shaanxi Provincial Natural Science Foundation of China (Grant No. 2014JM2-5082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Lu or Yongfang Zhang.

Appendices

Appendix 1: The parameters of the rod fastening rotor system

The parameters of the rod fastening rotor system are shown in Figs. 16 and 17.

Fig. 16
figure 16

Parameters of the shaft and disk 1

Fig. 17
figure 17

Parameters of the shaft and disk 2

In Fig. 16, \(x_{A}\) and \(y_{A}\) are the displacements of the center of the rotor at station \(A\) in the \(x\) and \(y\) directions. \(x_{B}\) and \(y_{B}\) are the displacements of the center of the rotor at station \(B\) in the \(x\) and \(y\) directions. \(x_{O1}\) and \(y_{O1}\) are the displacements of the center of disk 1 in the \(x\) and \(y\) directions. \(\theta _{x1}\) and \(\theta _{y1}\) are the angles that disk 1 rotates around the \(x\) and \(y\) axes. Other parameters are as follows:

$$\begin{aligned}&{ AO}_{1}=a_{1},\quad { AB}=l,\quad O_{1}B=l-a_{1}=b_{1},\quad x_1 =x_A +\frac{x_B -x_A }{l}a_1 =\frac{b_1 }{l}x_A +\frac{a_1 }{l}x_B,\\&{x}'_1 =x_{O1} -x_1,\quad \theta _{dy1} =\frac{x_B -x_A }{l},\quad \theta _{oy1} =\theta _{y1} -\theta _{dy1}, \\&y_1 =y_A +\frac{y_B -y_A }{l}a_1 =\frac{b_1 }{l}y_A +\frac{a_1 }{l}y_B,\quad {y}'_1 =y_{O1} -y_1,\quad \theta _{dx1} =\frac{y_B -y_A }{l},\quad \theta _{ox1} =\theta _{x1} -\theta _{dx1}. \end{aligned}$$

In Fig. 17, \(x_{O2}\) and \(y_{O2}\) are the displacements of the center of disk 2 in \(x\) and \(y\) directions. \(\theta _{x2}\) and \(\theta _{y2}\) are the angles that disk 2 rotates around \(x\) and \(y\) axes. Other parameters are as follows: \({ AO}_{2}=a_{2}, \quad { AB}=l, \quad O_{2}B=l-a_{2}=b_{2}\),

$$\begin{aligned}&x_2 =x_A +\frac{x_B -x_A }{l}a_2 =\frac{b_2 }{l}x_A +\frac{a_2 }{l}x_B, \quad {x}'_2 =x_{O2} -x_2, \quad \theta _{dy2} =\frac{x_B -x_A }{l},\quad \theta _{oy2} =\theta _{y2} -\theta _{dy2},\\&y_2 =y_A +\frac{y_B -y_A }{l}a_2 =\frac{b_2 }{l}y_A +\frac{a_2 }{l}y_B, \quad {y}'_2 =y_{O2} -y_2, \quad \theta _{dx2} =\frac{y_B -y_A }{l},\quad \theta _{ox2} =\theta _{x2} -\theta _{dx2}. \end{aligned}$$

Appendix 2: The mass, damping, and stiffness matrices

The mass, damping and stiffness matrices are as follows:

$$\begin{aligned}&{\mathbf {M}}=\left[ {{\begin{array}{cccccccccccc} {\bar{{m}}_A }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} {\bar{{m}}_A }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} {\bar{{m}}_{O1} }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} {\bar{{m}}_{O1} }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} {\bar{{J}}_{d1} }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} &{} {\bar{{J}}_{d1} }&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} &{} &{} {\bar{{m}}_{O2} }&{} 0&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} &{} &{} &{} {\bar{{m}}_{O2} }&{} 0&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} &{} &{} &{} &{} {\bar{{J}}_{d2} }&{} 0&{} 0&{} 0 \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} {\bar{{J}}_{d2} }&{} 0&{} 0 \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} {\bar{{m}}_B }&{} 0 \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} {\bar{{m}}_B } \\ \end{array} }} \right] \\&{\mathbf {G}}=\left[ {{\begin{array}{cccccccccccc} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad 0&{}\quad {-\bar{{J}}_{z1} \bar{{\omega }}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad {\bar{{J}}_{z1} \bar{{\omega }}}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad 0&{}\quad {-\bar{{J}}_{z2} \bar{{\omega }}}&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad {\bar{{J}}_{z2} \bar{{\omega }}}&{}\quad 0&{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad 0&{}\quad 0 \\ &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad &{}\quad 0 \\ \end{array} }} \right] \\ \end{aligned}$$
$$\begin{aligned}&{\mathbf {K}}=\left[ {{\begin{array}{cccccc} {\begin{array}{l} \left( K_{11} \frac{\bar{{b}}_1^2 }{\bar{{l}}^{2}}+\frac{K_{44} }{\bar{{l}}^{2}}-\frac{2K_{14} \bar{{b}}_1 }{\bar{{l}}^{2}} \right. \\ \left. \,\,\,+\,K_{11} \frac{\bar{{b}}_2^2 }{\bar{{l}}^{2}}+\frac{K_{44} }{\bar{{l}}^{2}}-\frac{2K_{14} \bar{{b}}_2 }{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0&{} {\left( -\frac{K_{11} \bar{{b}}_1 }{\bar{{l}}}+\frac{K_{14} }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\left( \frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{b}}_1 }{\bar{{l}}}\right) } \\ 0&{} {\begin{array}{l} \left( K_{22} \frac{\bar{{b}}_1^2 }{\bar{{l}}^{2}}+\frac{K_{33} }{\bar{{l}}^{2}}-\frac{2K_{23} \bar{{b}}_1 }{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,K_{22} \frac{\bar{{b}}_2^2 }{\bar{{l}}^{2}}+\frac{K_{33} }{\bar{{l}}^{2}}-\frac{2K_{23} \bar{{b}}_2 }{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0&{} {\left( -K_{22} \frac{\bar{{b}}_1 }{\bar{{l}}}+\frac{K_{23} }{\bar{{l}}}\right) }&{} {\left( \frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{b}}_1 }{\bar{{l}}}\right) }&{} 0 \\ {\left( \frac{K_{14} }{\bar{{l}}}-\frac{K_{11} \bar{{b}}_1 }{\bar{{l}}}\right) }&{} 0&{} {(K_{11} +K_b )}&{} 0&{} 0&{} {K_{14} } \\ 0&{} {\left( \frac{K_{23} }{\bar{{l}}}-\frac{K_{22} \bar{{b}}_1 }{\bar{{l}}}\right) }&{} 0&{} {(K_{22} +K_b )}&{} {K_{23} }&{} 0 \\ 0&{} {\left( \frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{b}}_1 }{\bar{{l}}}\right) }&{} 0&{} {K_{23} }&{} {K_{33} }&{} 0 \\ {\left( \frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{b}}_1 }{\bar{{l}}}\right) }&{} 0&{} {K_{14} }&{} 0&{} 0&{} {K_{44} } \\ {\left( -\frac{K_{11} \bar{{b}}_2 }{\bar{{l}}}+\frac{K_{14} }{\bar{{l}}}\right) }&{} 0&{} {-K_b }&{} 0&{} 0&{} 0 \\ 0&{} {\left( -\frac{K_{22} \bar{{b}}_2 }{\bar{{l}}}+\frac{K_{23} }{\bar{{l}}}\right) }&{} 0&{} {-K_b }&{} 0&{} 0 \\ 0&{} {\left( \frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{b}}_2 }{\bar{{l}}}\right) }&{} 0&{} 0&{} 0&{} 0 \\ {\left( \frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{b}}_2 }{\bar{{l}}}\right) }&{} 0&{} 0&{} 0&{} 0&{} 0 \\ {\begin{array}{l} \left( \frac{K_{11} \bar{{a}}_1 \bar{{b}}_1 }{\bar{{l}}^{2}}-\frac{K_{44} }{\bar{{l}}^{2}}+\frac{K_{14} (\bar{{b}}_1 -\bar{{a}}_1 )}{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,\frac{K_{11} \bar{{a}}_2 \bar{{b}}_2 }{\bar{{l}}^{2}}-\frac{K_{44} }{\bar{{l}}^{2}}+\frac{K_{14} (\bar{{b}}_2 -\bar{{a}}_2 )}{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0&{} {\left( -\frac{K_{11} \bar{{a}}_1 }{\bar{{l}}}-\frac{K_{14} }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\left( -\frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{a}}_1 }{\bar{{l}}}\right) } \\ 0&{} {\begin{array}{l} \left( \frac{K_{22} \bar{{a}}_1 \bar{{b}}_1 }{\bar{{l}}^{2}}-\frac{K_{33} }{\bar{{l}}^{2}}+\frac{K_{23} (\bar{{b}}_1 -\bar{{a}}_1 )}{\bar{{l}}^{2}} \right. \\ \left. \,\,\,+\,\frac{K_{22} \bar{{a}}_2 \bar{{b}}_2 }{\bar{{l}}^{2}}-\frac{K_{33} }{\bar{{l}}^{2}}+\frac{K_{23} (\bar{{b}}_2 -\bar{{a}}_2 )}{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0&{} {\left( -\frac{K_{22} \bar{{a}}_1 }{\bar{{l}}}-\frac{K_{23} }{\bar{{l}}}\right) }&{} {\left( -\frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{a}}_1 }{\bar{{l}}}\right) }&{} 0 \\ \end{array} }} \right. \end{aligned}$$
$$\begin{aligned} \left. {{\begin{array}{cccccc} {\left( -\frac{K_{11} \bar{{b}}_2 }{\bar{{l}}}+\frac{K_{14} }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\left( \frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{b}}_2 }{\bar{{l}}}\right) }&{} {\begin{array}{l} \left( \frac{K_{11} \bar{{a}}_1 \bar{{b}}_1 }{\bar{{l}}^{2}}-\frac{K_{44} }{\bar{{l}}^{2}}+\frac{K_{14} (\bar{{b}}_1 -\bar{{a}}_1 )}{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,\frac{K_{11} \bar{{a}}_2 \bar{{b}}_2 }{\bar{{l}}^{2}}-\frac{K_{44} }{\bar{{l}}^{2}}+\frac{K_{14} (\bar{{b}}_2 -\bar{{a}}_2 )}{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0 \\ 0&{} {\left( -K_{22} \frac{\bar{{b}}_2 }{\bar{{l}}}+\frac{K_{23} }{\bar{{l}}}\right) }&{} {\left( \frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{b}}_2 }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\begin{array}{l} \left( \frac{K_{22} \bar{{a}}_1 \bar{{b}}_1 }{\bar{{l}}^{2}}-\frac{K_{33} }{\bar{{l}}^{2}}+\frac{K_{23} (\bar{{b}}_1 -\bar{{a}}_1 )}{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,\frac{K_{22} \bar{{a}}_2 \bar{{b}}_2 }{\bar{{l}}^{2}}-\frac{K_{33} }{\bar{{l}}^{2}}+\frac{K_{23} (\bar{{b}}_2 -\bar{{a}}_2 )}{\bar{{l}}^{2}}\right) \\ \end{array}} \\ {-K_b }&{} 0&{} 0&{} 0&{} {\left( -\frac{K_{11} \bar{{a}}_1 }{\bar{{l}}}-\frac{K_{14} }{\bar{{l}}}\right) }&{} 0 \\ 0&{} {-K_b }&{} 0&{} 0&{} 0&{} {\left( -\frac{K_{22} \bar{{a}}_1 }{\bar{{l}}}-\frac{K_{23} }{\bar{{l}}}\right) } \\ 0&{} 0&{} 0&{} 0&{} 0&{} {\left( -\frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{a}}_1 }{\bar{{l}}}\right) } \\ 0&{} 0&{} 0&{} 0&{} {\left( -\frac{K_{44} }{\bar{{l}}}-\frac{K_{14} a_1 }{\bar{{l}}}\right) }&{} 0 \\ {(K_{11} +K_b )}&{} 0&{} 0&{} {K_{14} }&{} {\left( -\frac{K_{11} a_2 }{\bar{{l}}}-\frac{K_{14} }{\bar{{l}}}\right) }&{} 0 \\ 0&{} {(K_{22} +K_b )}&{} {K_{23} }&{} 0&{} 0&{} {\left( -\frac{K_{22} \bar{{a}}_2 }{\bar{{l}}}-\frac{K_{23} }{\bar{{l}}}\right) } \\ 0&{} {K_{23} }&{} {K_{33} }&{} 0&{} 0&{} {\left( -\frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{a}}_2 }{\bar{{l}}}\right) } \\ {K_{14} }&{} 0&{} 0&{} {K_{44} }&{} {\left( -\frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{a}}_2 }{\bar{{l}}}\right) }&{} 0 \\ {\left( -\frac{K_{11} \bar{{a}}_2 }{\bar{{l}}}-\frac{K_{14} }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\left( -\frac{K_{44} }{\bar{{l}}}-\frac{K_{14} \bar{{a}}_2 }{\bar{{l}}}\right) }&{} {\begin{array}{l} \left( \frac{K_{11} \bar{{a}}_1^2 }{\bar{{l}}^{2}}+\frac{K_{44} }{\bar{{l}}^{2}}+\frac{2K_{14} \bar{{a}}_1 }{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,\frac{K_{11} \bar{{a}}_2^2 }{\bar{{l}}^{2}}+\frac{K_{44} }{\bar{{l}}^{2}}+\frac{2K_{14} \bar{{a}}_2 }{\bar{{l}}^{2}}\right) \\ \end{array}}&{} 0 \\ 0&{} {\left( -\frac{K_{22} \bar{{a}}_2 }{\bar{{l}}}-\frac{K_{23} }{\bar{{l}}}\right) }&{} {\left( -\frac{K_{33} }{\bar{{l}}}-\frac{K_{23} \bar{{a}}_2 }{\bar{{l}}}\right) }&{} 0&{} 0&{} {\begin{array}{l} \left( \frac{K_{22} \bar{{a}}_1^2 }{\bar{{l}}^{2}}+\frac{K_{33} }{\bar{{l}}^{2}}+\frac{2K_{23} \bar{{a}}_1 }{\bar{{l}}^{2}}\right. \\ \left. \,\,\,+\,\frac{K_{22} \bar{{a}}_2^2 }{\bar{{l}}^{2}}+\frac{K_{33} }{\bar{{l}}^{2}}+\frac{2K_{23} \bar{{a}}_2 }{\bar{{l}}^{2}}\right) \\ \end{array}} \\ \end{array} }} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hei, D., Lu, Y., Zhang, Y. et al. Nonlinear dynamic behaviors of rod fastening rotor-hydrodynamic journal bearing system. Arch Appl Mech 85, 855–875 (2015). https://doi.org/10.1007/s00419-015-0996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0996-5

Keywords

Navigation