Skip to main content
Log in

The analytical solutions for the stress distributions within elastic hollow spheres under the diametrical point loads

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an exact analytical solution for the stress distributions within an elastic hollow sphere subjected to diametrical point loads. The solution is suitable for both thin and thick hollow spheres. New variables are introduced in order to uncouple the system of governing equations so that explicit differential equations are obtained for displacement components and stress components. Moreover, Fourier–Legendre expansion technique is employed in order to determine the unknown coefficients in the analytical solutions for hollow spheres. The present solution can be considered as an extension of the classical solution by Hiramatsu and Oka (Int J Rock Mech Min Sci 3:89–99, 1966) for solid spheres under the point loads, which provided the theoretical basis for the point load strength test. Unlike in solid spheres, the stress concentrations within the hollow spheres under the point loads are usually developed at the joint point of the inner surface and the loading axis, and the thinner the hollow sphere, the larger the tensile stress concentrations developed at the inner surface. This numerical result indicates that the failure of the hollow spheres usually starts at the inner surface, and the normalized tensile stress at the inner surface increases with the increase in Poisson’s ratio and internal pressure, but decreases with the increase in the size of the loading area. Moreover, significant shear stress zone is usually developed in the areas immediately inside the outer surface, and the maximum shear stress is often developed at the point immediately inside the outer surface jointing the edge of the loading area and the center of the hollow sphere. The present solution can be used to analyze the failure mechanism of bulk foams made up of hollow spheres in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andersen, O., Waag, U., Schneider, L., Stephani, G., Kieback, B.: Novel metallic hollow sphere structures. Adv. Eng. Mater. 2, 192–195 (2000)

    Article  Google Scholar 

  2. Li, P., Petrinic, N., Siviour, C.R.: Finite element modelling of the mechanism of deformation and failure in metallic thin-walled hollow spheres under dynamic compression. Mech. Mater. 54, 43–54 (2012)

    Article  Google Scholar 

  3. Ashoka, S., Veerappa, T.K., Thimmanna, C.G.: Simple non-basic solution route for the preparation of zinc oxide hollow spheres. Phy. E Low Dimens. Syst. Nanostruct. 44(7–8), 1346–1350 (2012)

    Google Scholar 

  4. He, H., Cai, W., Dai, Z.: Fabrication of porous Ag hollow sphere arrays based on coated template-plasma bombardment. Nanotechnology 24(46), 465302 (2013)

    Article  Google Scholar 

  5. Li, Y., Ren, N., Wang, Y.: Synthesis and properties of polyacrylamide/hollow coal gangue spheres superabsorbent composites. J. Appl. Polym. Sci. 130(3), 2184–2187 (2013)

    Article  Google Scholar 

  6. Li, Z.W., Wang, H.W., Wei, Z.J., Wang, Y.G.: Fabrication and compressive properties of K405 alloy hollow sphere foams. Rare Metal Mater. Eng. 37(1), 135–138 (2008)

    Google Scholar 

  7. Karagiozova, D., Yu, T.X., Gao, Z.Y.: Modeling of MHS cellular solid in large strains. Int. J. Mech. Sci. 48(11), 1273–1286 (2006)

    Article  MATH  Google Scholar 

  8. Le, Y., Chen, J.F., Wang, W.C.: Study on the silica hollow spheres by experiment and molecular simulation. Appl. Surf. Sci. 230, 319–326 (2004)

    Article  Google Scholar 

  9. Norwanis, H., Saiyid, H.S.F., et al.: The influence wall thickness of cement hollow spheres towards compressive properties of cement syntactic foam. Adv. Mater. Res. 701, 201–295 (2013)

    Google Scholar 

  10. Carlisle, K.B., Koopman, M., Chawla, K.K., Kulkarni, R., Gladysz, G.M., Lewis, M.: Microstructure and compressive properties of carbon microballoons. J. Mater. Sci. 41, 3987–3997 (2006)

    Article  Google Scholar 

  11. Dalla, T.F., Van, S.H., Victoria, M.: Nanocrystalline electrodeposited Ni: microstructure and tensile properties. Acta Mater. 50, 3957–3970 (2002)

    Article  Google Scholar 

  12. Ebrahimi, F., Bourne, G.R., Kelly, M.S., Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343–350 (1999)

    Article  Google Scholar 

  13. Gasser, S., Paun, F., Cayzeele, A., Brechet, Y.: Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres. Scr. Mater. 48, 1617–1623 (2003)

    Article  Google Scholar 

  14. Gupta, N.K., Prasad, G.L.E., Gupta, S.K.: Axial compression of metallic spherical shells between rigid plates. Thin Walled Struct. 34, 21–41 (1999)

    Article  Google Scholar 

  15. Gupta, N.K., Venkatesh: Experimental and numerical studies of dynamic axial compression of thin walled spherical shells. Int. J. Impact Eng. 30, 1225–1240 (2004)

  16. Koopman, M., Gouadec, G., Carlisle, K., Chawla, K.K., Gladysz, G.: Compression testing of hollow microspheres (microballoons) to obtain mechanical properties. Scr. Mater. 50, 593–596 (2004)

    Article  Google Scholar 

  17. Li, P., Petrinic, N., Siviour, C.R.: Quantification of impact energy dissipation capacity in metallic thin-walled hollow sphere foams using high speed photography. J. Appl. Phys. 110, 083516 (2011)

    Article  Google Scholar 

  18. Dong, X.L., Gao, Z.Y., Yu, T.X.: Dynamic crushing of thin-walled spheres: an experimental study. Int. J. Impact Eng. 35, 717–726 (2008)

    Article  Google Scholar 

  19. Vesenjak, M., Fiedler, T., Ren, Z., Öchsner, A.: Dynamic behaviour of metallic hollow sphere structures. In: Öechsner, A., Augustin, C. (eds.) Multifunctional Metallic Hollow Sphere Structures, pp. 137–158. Springer, Berlin (2009)

    Chapter  Google Scholar 

  20. Zeng, H.B., Pattofatto, S., Zhao, H., Girard, Y., Fascio, V.: Impact behaviour of hollow sphere agglomerates with density gradient. Int. J. Mech. Sci. 52, 680–688 (2010)

    Article  Google Scholar 

  21. Lim, T.J., Smith, B., McDowell, D.L.: Behavior of a random hollow sphere metal foam. Acta Mater. 50, 2867–2879 (2002)

    Article  Google Scholar 

  22. Sanders, W.S., Gibson, L.J.: Mechanics of hollow sphere foams. Mater. Sci. Eng. A 347, 70–85 (2003)

    Article  Google Scholar 

  23. Shorter, R., Smith, J.D., Coveney, V.A., James, J.C.B.: Axial compression of hollow elastic spheres. J. Mech. Mater. Struct. 5(5), 693–706 (2010)

    Article  Google Scholar 

  24. Fok, S.L., Allwright, D.J.: Buckling of a spherical shell embedded in an elastic medium loaded by a far-field hydrostatic pressure. J. Strain Anal. 36, 535–544 (2001)

    Article  Google Scholar 

  25. Koiter, W.T.: A spherical shell under point loads at its poles. In: Progress in Applied Mechanics (Prager Anniversary Volume), pp. 155–170 (1963)

  26. Koiter, W.T.: The nonlinear buckling problem of a complete spherical shell under uniform external pressure. Proc. Kon. Ned. Akad. B. Phys. 72, 40–123 (1969)

  27. Kobayashi, H., Matsumura, H., Ishimaru, K., Sonoda, K.: Impact response analysis of spherically symmetric, layered hollow spheres. In: Proceedings of the Annual Conference Hokkaido Branch, Japan Soc Civil Engineers, Tomakomai, pp. 102–107 (1994) (in Japanese)

  28. Kobayashi, H., Ishimaru, K.: An elastodynamic solution for an anisotropic hollow sphere. Int. J. Solids Struct. 32(1), 127–133 (1995)

    Article  Google Scholar 

  29. Pao, Y.H., Ceranoglu, A.N.: Determination of transient response of a thick-walled spherical shell by the ray theory. J. Appl. Mech. ASME 45(1), 114–122 (1978)

    Article  MATH  Google Scholar 

  30. Bickford, W.B., Warren, W.E.: The propagation and reflection of elastic waves in anisotropic hollow spheres and cylinders. In: Shaw, W.A. (ed.) Developments in Theoretical and Applied Mechanics, vol. 3, pp. 433–445 (1967)

  31. Lur’e, A.E.: Equilibrium of an elastic symmetrically loaded spherical shell. Prikl. Mat. Mekh. 7, 393–404 (1943) (in Russian)

  32. Gregory, R.D., Milac, T.I., Wan, F.Y.M.: The axisymmetric deformation of a thin, or moderately thick, elastic spherical cap. Stud. Appl. Math. 100, 67–94 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Flugge, W.: Stresses in Shells, 2nd edn. Springer, New York (1973)

    Book  Google Scholar 

  34. Gregory, R.D., Milac, T.I., Wan, F.Y.M.: A thick hollow sphere compressed by equal and opposite concentrated axial loads: an asymptotic solution. SIAM J. Appl. Math. 59, 1080–1097 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Chau, K.T., Wei, X.X.: Spherically isotropic, elastic spheres subject to diametral point load strength test. Int. J. Solids Struct. 36(29), 4473–4496 (1999)

    Article  MATH  Google Scholar 

  36. Chau, K.T., Wei, X.X., Wong, R.H.C., Yu, T.X.: Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses. Mech. Mater. 32(9), 543–554 (2000)

    Article  Google Scholar 

  37. Wei, X.X.: Analytical solutions for solid spheres of Si\(_{1-x}\)Gex alloy under diametrical compression. Mech. Res. Commun. 36, 682–689 (2009)

    Article  MATH  Google Scholar 

  38. Hiramatsu, Y., Oka, Y.: Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J. Rock Mech. Min. Sci. 3, 89–99 (1966)

    Article  Google Scholar 

  39. Brown, J.W., Churchill, R.: Fourier Series and Boundary Value Problems, 5th edn. McGraw Hill, New York (1993)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11272049 and 11390362). The authors are grateful for the helpful discussions with Prof. K. T. Chau of the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X.X., Wang, Z.M. & Xiong, J. The analytical solutions for the stress distributions within elastic hollow spheres under the diametrical point loads. Arch Appl Mech 85, 817–830 (2015). https://doi.org/10.1007/s00419-015-0993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0993-8

Keywords

Navigation