Skip to main content
Log in

A new version of Hill’s lemma for Cosserat continuum

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A new version of Hill’s lemma is presented for micro- to macrohomogenization modeling of heterogeneous Cosserat continuum in the frame of average-field theory. From the presented Hill’s lemma, new forms of rotational displacement and surface couple boundary conditions on the representative volume element are extracted and checked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  2. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Prosperities of Heterogeneous Materials. Elsevier, Amsterdam (1999)

    Google Scholar 

  3. Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken New Jersey (2006)

    Book  Google Scholar 

  4. Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds.) Plasticity Today: Modelling, Methods and Applications. Elsevier Applied Science Publishers, London (1985)

    Google Scholar 

  5. Michel, J.C., Moulinec, C., Suquet, P.M.: Effective properties of composite materials with periodic macrostructure: a computational approach. Comput. Meth. Appl. Mech. Eng. 172, 109–143 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Miehe, C., Koch, A.: Computational micro-to-macro transition of discretized microstructures undergoing small strain. Arch. Appl. Mech. 72, 300–317 (2002)

    Article  MATH  Google Scholar 

  7. Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Modelling Simul. Mater. Sci. Eng. 7, 829–840 (1999)

    Article  Google Scholar 

  8. Yuan, X., Tomita, Y.: Effective properties of Cosserat composites with periodic microstructure. Mech. Res. Commun. 28(3), 265–270 (2001)

    Article  MATH  Google Scholar 

  9. Ebinger, T., Steeb, H., Diebels, S.: Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Comput. Mater. Sci. 32, 337–347 (2005)

    Article  Google Scholar 

  10. Hu, G.K., Liu, X.N., Lu, T.J.: A variational method for non-linear micropolar composites. Mech. Mater. 37, 407–425 (2005)

    Article  Google Scholar 

  11. Larsson, R., Diebels, S.: A second-order homogenization procedure for multi-scale analysis based on micorpolar kinematics. Int. J. Numer. Methods Eng. 69(12), 2485–2512 (2006)

    Article  MathSciNet  Google Scholar 

  12. Addessi, D., De Bellis, M.L., Sacco, E.: Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech. Res. Commun. 54, 27–34 (2013)

    Article  Google Scholar 

  13. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A/Solids 49, 396–407 (2015)

    Article  Google Scholar 

  14. Li, X.K., Liu, Q.P.: A version of Hill’s lemma for Cosserat continuum. Acta Mech. Sin. 25, 499–506 (2009)

    Article  MATH  Google Scholar 

  15. Ostoja-Starzewski, M.: Macrohomogeneity condition in dynamics of micropolar media. Arch. Appl. Mech. 81(7), 899–906 (2011)

    Article  MATH  Google Scholar 

  16. Li, X.K., Zhang, J.B., Zhang, X.: Micro-macro homogenization of gradient-enhanced Cosserat media. Eur. J. Mech. A/Solids 30, 362–372 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, Q.P.: Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mech. 224, 851–866 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. R. de Borst: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)

  19. Onck, P.R.: Cosserat modeling of cellular solids. C. R. Mec. 330, 717–722 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, X.K., Tang, H.X.: A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Comput. Struct. 83, 1–10 (2005)

    Article  Google Scholar 

  21. Alsaleh, M.I., Voyiadjis, G.Z., Alshibli, K.A.: Modeling strain localization in granular materials using micropolar theory: Mathematical formulations. Int. J. Numer. Anal. Methods Geomech. 30, 1501–1524 (2006)

    Article  MATH  Google Scholar 

  22. Arslan, H., Sture, S.: Evaluation of a physical length scale for granular materials. Comput. Mater. Sci. 42, 525–530 (2008)

    Article  Google Scholar 

  23. Chang, C.S., Liao, C.L.: Constitutive relation for a particulate medium with the effect of particle rotation. Int. J. Solids Struct. 26, 437–453 (1990)

    Article  MATH  Google Scholar 

  24. Ehlers, W., Ramm, E., Diebels, S., et al.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40, 6681–6702 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is pleased to acknowledge the support of this work by the National Natural Science Foundation of China through the project with Grant number 11202042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qipeng Liu.

Appendix A: Verification of Hill’s lemma given by Eq. (47)

Appendix A: Verification of Hill’s lemma given by Eq. (47)

With the use of Eqs. (1), (26), and Gauss theorem, the first term at the right-hand side of Hill’s lemma given by Eq. (47) can be deduced as

$$\begin{aligned}&\frac{1}{V}\int \limits _S {(u_i -\bar{{u}}_{i,j} x_j )\left( n_k \sigma _{ki} -n_k \bar{{\sigma }}_{ki} \right) \hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _S {\left( {n_k \sigma _{ki} u_i +\bar{{\sigma }}_{ki} \bar{{u}}_{i,j} n_k x_j -\bar{{u}}_{i,j} n_k \sigma _{ki} x_j -\bar{{\sigma }}_{ki} n_k u_i } \right) \hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _S {n_k \sigma _{ki} u_i \hbox {d}S} +\bar{{\sigma }}_{ki} \bar{{u}}_{i,j} \frac{1}{V}\int \limits _S {n_k x_j \hbox {d}S} -\bar{{u}}_{i,j} \frac{1}{V}\int \limits _S {n_k \sigma _{ki} x_j \hbox {d}S} -\bar{{\sigma }}_{ij} \frac{1}{V}\int \limits _S {n_i u_j \hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _V {\frac{\partial (\sigma _{ki} u_i )}{\partial x_k }\hbox {d}V} +\bar{{\sigma }}_{ki} \bar{{u}}_{i,j} \frac{1}{V}\int \limits _V {\frac{\partial x_k }{\partial x_j }\hbox {d}V} -\bar{{u}}_{i,j} \frac{1}{V}\int \limits _V {\frac{\partial (\sigma _{kj} x_i )}{\partial x_k }\hbox {d}V} -\bar{{\sigma }}_{ij} \frac{1}{V}\int \limits _V {u_{j,i} \hbox {d}V} \nonumber \\&\quad =\overline{\sigma _{ij} u_{j,i} } +\bar{{\sigma }}_{ij} \bar{{u}}_{j,i} -\bar{{\sigma }}_{ij} \bar{{u}}_{j,i} -\bar{{\sigma }}_{ij} \bar{{u}}_{j,i} =\overline{\sigma _{ij} u_{j,i} } -\bar{{\sigma }}_{ij} \bar{{u}}_{j,i} \end{aligned}$$
(A.1)

With the use of Eqs. (20), (37), and Gauss theorem, the second term at the right-hand side of Hill’s lemma given by Eq. (47) can be deduced as

$$\begin{aligned}&\frac{1}{V}\int \limits _S {(\omega _i -\bar{{\omega }}_{i,j} x_j )(n_k {\mu }^{{\prime }{\prime }}_{ki} -n_k \bar{{\mu }}^{{\prime }{\prime }}_{ki} )\hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _S {\left( {\omega _i n_k {\mu }^{{\prime }{\prime }}_{ki} -\omega _i n_k \bar{{\mu }} ^{{\prime }{\prime }}_{ki} -n_k {\mu }^{{\prime }{\prime }}_{ki} \bar{{\omega }}_{i,j} x_j +n_k \bar{{\mu }}^{{\prime }{\prime }}_{ki} \bar{{\omega }}_{i,j} x_j } \right) \hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _S {n_k {\mu }^{{\prime }{\prime }}_{ki} \omega _i \hbox {d}S} -\bar{{\mu }}^{{\prime }{\prime }}_{ki} \frac{1}{V}\int \limits _S {n_k \omega _i \hbox {d}S} -\bar{{\omega }}_{i,j} \frac{1}{V}\int \limits _S {n_k {\mu }^{{\prime }{\prime }}_{ki} x_j \hbox {d}S} +\bar{{\mu }}^{{\prime }{\prime }}_{ki} \bar{{\omega }}_{i,j} \frac{1}{V}\int \limits _S {n_k x_j \hbox {d}S} \nonumber \\&\quad =\frac{1}{V}\int \limits _V {\frac{\partial ({\mu }^{{\prime }{\prime }}_{ki} \omega _i )}{\partial x_k }\hbox {d}V} -\bar{{\mu }}^{{\prime }{\prime }}_{ki} \bar{{\kappa }}_{ik} -\bar{{\omega }}_{i,j} \frac{1}{V}\int \limits _V {\frac{\partial ({\mu }^{{\prime }{\prime }}_{ki} x_j )}{\partial x_k }\hbox {d}V} +\bar{{\mu }}^{{\prime }{\prime }}_{ki} \bar{{\omega }}_{i,j} \frac{1}{V}\int \limits _S {\frac{\partial x_j }{\partial x_k }\hbox {d}S} \nonumber \\&\quad =\overline{{\mu }^{{\prime }{\prime }}_{ij} \kappa _{ij} } -\bar{{\mu }}^{{\prime }{\prime }}_{ij} \bar{{\kappa }}_{ij} -\bar{{\mu }}^{{\prime }{\prime }}_{ij} \bar{{\kappa }}_{ij} +\bar{{\mu }}^{{\prime }{\prime }}_{ij} \bar{{\kappa }}_{ij} =\overline{{\mu }^{{\prime }{\prime }}_{ij} \kappa _{ij} } -\bar{{\mu }}^{{\prime }{\prime }}_{ij} \bar{{\kappa }}_{ij} \end{aligned}$$
(A.2)

From Eqs. (A.1)–(A.2), we can obtain Eq. (47), i.e.,

$$\begin{aligned}&\overline{\sigma _{ij} u_{j,i} } -\bar{{\sigma }}_{ij} \bar{{u}}_{j,i} +\overline{{\mu }^{{\prime }{\prime }}_{ij} \kappa _{ij} } -\bar{{\mu }}^{{\prime }{\prime }}_{ij} \bar{{\kappa }}_{ij} \nonumber \\&\quad =\frac{1}{V}\int \limits _S {(u_i -\bar{{u}}_{i,j} x_j )(n_k \sigma _{ki} -n_k \bar{{\sigma }}_{ki} )\hbox {d}S} +\frac{1}{V}\int \limits _S {(\omega _i -\bar{{\omega }}_{i,j} x_j )(n_k {\mu }^{{\prime }{\prime }}_{ki} -n_k \bar{{\mu }}^{{\prime }{\prime }}_{ki} )\hbox {d}S} \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q. A new version of Hill’s lemma for Cosserat continuum. Arch Appl Mech 85, 761–773 (2015). https://doi.org/10.1007/s00419-015-0988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0988-5

Keywords

Navigation