Skip to main content
Log in

Lamé’s strain potential method for plane gradient elasticity problems

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The method of Lamé’s strain potential for solving analytically a certain class of problems of classical elasticity is extended here to plane gradient elasticity of the simple Mindlin’s type with just one constant (internal length) in addition to the two classical elastic moduli. According to this method, the strains are expressed as second-order derivatives of a scalar function (Lamé’s strain potential). Thus, combining compatibility, equilibrium and stress–strain equations under plane stress or plane strain conditions and zero body forces, one can prove that this strain potential satisfies an equation of the fourth order instead of the second one for the classical case. General solutions of this equation in Cartesian and polar coordinates are provided. Four examples, two in Cartesian and two in axisymmetric polar coordinates, are presented to illustrate the method and demonstrate its advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ratio. Mech. Anal. 16, 51–78 (1964)

    MATH  MathSciNet  Google Scholar 

  2. Eringen C.A.: Linear theory of micropolar elasticity. J. Mathe. Mech. 15, 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  3. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Koiter, W.T.: Couple stresses in the theory of elasticity, I & II. In: Proceedings of the Royal Netherlands Academy of Sciences (K. Ned. Akad. Wet.), B67, pp. 17–44 (1964)

  5. Tiersten H.F., Bleustein J.L.: General elastic continua. In: Hermann , G. (eds) R.D. Mindlin and Applied Mechanics, pp. 67–103. Pergamon Press, New York (1974)

  6. Lakes R.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus, H.B. (eds) Continuum Models for Materials with Microstructure, pp. 1–25. Wiley, Chichester (1995)

  7. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Chapman and Hall, London (1995)

    Google Scholar 

  8. Exadactylos G.E., Vardoulakis I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81–109 (2001)

    Article  Google Scholar 

  9. Altan B.S., Aifantis E.C.: On the structure of the mode-III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia 26, 319–324 (1992)

    Article  Google Scholar 

  10. Ru C.Q., Aifantis E.C.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mechanica 101, 59–68 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Vardoulakis I., Exadactylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. de Physique IV 8, 399–406 (1998)

    Google Scholar 

  12. Tsepoura K.G., Papargyri-Beskou S., Polyzos D., Beskos D.E.: Static and dynamic analysis of gradient elastic bars in tension. Arch. Appl. Mech. 72, 483–497 (2002)

    Article  MATH  Google Scholar 

  13. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  14. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  15. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. Georgiadis H.G.: The mode-III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. ASME J. Appl. Mech. 70, 517–530 (2003)

    Article  MATH  Google Scholar 

  17. Lazar M., Maugin G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43, 1157–1184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lazar M., Maugin G.A., Aifantis E.C.: Dislocations in second strain gradient elasticity. Int. J. Solids Struct. 43, 1787–1817 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vardoulakis I., Giannakopoulos A.E.: An example of double forces taken from structural analysis. Int. J. Solids Struct. 43, 4047–4062 (2006)

    Article  MATH  Google Scholar 

  20. Giannakopoulos A.E., Stamoulis K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440–3451 (2007)

    Article  MATH  Google Scholar 

  21. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  22. Papargyri-Beskou S., Beskos D.E.: Stability analysis of gradient elastic circular cylindrical shells. Int. J. Eng. Sci. 47, 1379–1385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Papargyri-Beskou S., Beskos D.E.: Static analysis of gradient elastic bars, beams, plates and shells. Open Mech. J. 4, 65–73 (2010)

    Google Scholar 

  24. Georgiadis H.G., Anagnostou D.S.: Problems of Flamant-Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gourgiotis P.A., Georgiadis H.G.: Plane-strain crack problems in microstructure solids governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898–1920 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gao X.L., Ma H.M.: Green’s function and Eshelby’s tensor based on a simplified strain gradient elasticity theory. Acta Mechanica 207, 163–181 (2009)

    Article  MATH  Google Scholar 

  27. Gao X.L., Ma H.M.: Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. Lond. A 466, 2425–2446 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Papargyri-Beskou, S., Charalambakis, N.: Airy’s stress function approach in plane gradient elasticity. In: Papanastasiou, P., et al. (eds.) CD-ROM Proceedings of 9th HSTAM International Congress on Mechanics, Limassol, Cyprus (12–14 July 2010)

  29. Papargyri-Beskou S., Giannakopoulos A.E., Beskos D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  30. Aravas N.: Plane strain problems for a class of gradient elasticity models-A stress function approach. J. Elast. 104, 45–70 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Amanatidou E., Aravas N.: Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng. 191, 1723–1751 (2002)

    Article  MATH  Google Scholar 

  32. Giannakopoulos A.E., Amanatidou E., Aravas N.: A reciprocity theorem in linear gradient elasticity and the corresponding Saint–Venant principle. Int. J. Solids Struct. 43, 3875–3894 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Askes H., Gutierrez M.A.: Implicit gradient elasticity. Int. J. Numer. Methods Eng. 67, 400–416 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Askes H., Morata I., Aifantis E.C.: Finite element analysis with staggered gradient elasticity. Comput. Struct. 86, 1266–1279 (2008)

    Article  Google Scholar 

  35. Zervos A.: Finite elements for elasticity with microstructure and gradient elasticity. Int. J. Numer. Methods Eng. 73, 564–595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zervos A., Papanicolopulos S.A., Vardoulakis I.: Two finite-element discretizations for gradient elasticity. J. Eng. Mech. ASCE 135, 203–213 (2009)

    Article  Google Scholar 

  37. Markolefas S.I., Tsouvalas D.A., Tsamasfyros G.I.: Mixed finite element formulation for the general anti-plane shear problem, including mode III crack computations, in the framework of dipolar linear gradient elasticity. Comput. Mech. 43, 715–730 (2009)

    Article  MATH  Google Scholar 

  38. Tsepoura K.G., Papargyri-Beskou S., Polyzos D.: A boundary element method for solving 3D static gradient elastic problems with surface energy. Comput. Mech. 29, 361–381 (2002)

    Article  MATH  Google Scholar 

  39. Polyzos D., Tsepoura K.G., Tsinopoulos S.V., Beskos D.E.: A boundary element method for solving 2-D and 3-D static gradient elastic problems, part I: integral formulation. Comput. Methods Appl. Mech. Eng. 192, 2845–2873 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tsepoura K.G., Tsinopoulos S.V., Polyzos D., Beskos D.E.: A boundary element method for solving 2-D and 3-D static gradient elastic problems, part II: numerical implementation. Comput. Methods Appl. Mech. Eng. 192, 2875–2907 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Karlis G., Tsinopoulos S.V., Polyzos D., Beskos D.E.: Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comput. Methods Appl. Mech. Eng. 196, 5092–5103 (2007)

    Article  MATH  Google Scholar 

  42. Karlis G.F., Charalambopoulos A., Polyzos D.: An advanced boundary element method for solving 2D and 3D static problems in Mindlin’s strain-gradient theory of elasticity. Int. J. Numer. Methods Eng. 83, 1407–1427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Barber J.R.: Elasticity. 2nd edn. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  44. Timoshenko S.P., Goodier J.N.: Theory of Elasticity. 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  45. Mathematica: Version 4. Wolfram Research Inc., Champaign (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Papargyri-Beskou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papargyri-Beskou, S., Tsinopoulos, S. Lamé’s strain potential method for plane gradient elasticity problems. Arch Appl Mech 85, 1399–1419 (2015). https://doi.org/10.1007/s00419-014-0964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0964-5

Keywords

Navigation