Skip to main content
Log in

Automatic differentiation for stress and consistent tangent computation

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the field of nonlinear finite element analysis, the linearization within the Newton–Raphson and the Multilevel-Newton–Raphson algorithm requires the computation of the stresses and the so-called consistent tangent operator. There are several possibilities for coding the derivatives either by deriving analytical expressions, by using numerical differentiation schemes, or by applying the concept of automatic differentiation. In this article, the three possibilities are compared for three different kinds of constitutive models in order to ascertain particular differences. These models are a finite strain hyperelasticity relation, a more sophisticated finite strain viscoplasticity model, and a small strain von Mises-type thermo-viscoplasticity model. Especially for the last example, it is required to provide a number of tangents to be derived within a monolithic, fully coupled finite element computation. Numerical examples investigate the advantages and disadvantages of analytical, numerical, and automatic differentiation. It is shown that the latter one is a very helpful tool in the developing stage of constitutive modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe K.-J.: Finite Element Procedures. Prentice Hall, London (2006)

    Google Scholar 

  2. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Willey, Chichester (2000)

    Google Scholar 

  3. Bier W., Hartmann S.: A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. Eur. J. Mech. Ser. A/Solids 25, 1009–1030 (2006)

    Article  Google Scholar 

  4. Birken P., Quint K.J., Hartmann S., Meister A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Vis. Sci. 13, 331–340 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bischof C., Carle A., Corliss G., Griewank A., Hovland P.: Adifor—generating derivative codes from fortran programs. Sci. Program. 1(1), 11–29 (1992)

    Google Scholar 

  6. Bischof C., Khademi P., Mauer A., Carle A.: Adifor 2.0: Automatic differentiation of fortran 77 programs. Comput. Sci. Eng. IEEE 3(3), 18–32 (1996)

    Article  Google Scholar 

  7. Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  8. Ehlers W., Eipper G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  MathSciNet  Google Scholar 

  9. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Doctoral thesis, Institute of Mechanics II, University of Stuttgart. Report No. II-3 (1999)

  10. Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51, 679–707 (2001)

    Article  Google Scholar 

  11. Flory P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  12. Fritzen, P.: Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie. Doctoral thesis, Department of Mathematics, University of Darmstadt (1997)

  13. Glaser, S.: Berechnung gekoppelter thermomechanischer Prozesse. Technical Report ISD Report No. 91/3, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen, Universität Stuttgart, Stuttgart, Germany (1991)

  14. Griewank A, Walther A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  Google Scholar 

  15. Hairer E., Wanner G.: Solving Ordinary Differential Equations II. 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  16. Hamkar A.-W., Hartmann S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. 50, 3–22 (2012)

    Google Scholar 

  17. Hartmann, S.: Nichtlineare Finite-Elemente-Berechnung angewendet auf ein Viskoplastizitätsmodell mit Überspannungen. In: Hartmann, S., Tsakmakis, C. (eds.) Aspekte der Kontinuumsmechanik und Materialtheorie, pp. 55–80. Gesamthochschul-Bibliothek Verlag, Kassel (1998)

  18. Hartmann S.: Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput. Methods Appl. Mech. Eng. 191(13-14), 1439–1470 (2002)

    Article  Google Scholar 

  19. Hartmann, S.: Finite-Elemente Berechnung inelastischer Kontinua. Interpretation als Algebro-Differentialgleichungssysteme. Habilitation, University of Kassel, Institute of Mechanics. Report No. 1/2003 (2003)

  20. Hartmann S.: A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput. Mech. 36(2), 100–116 (2005)

    Article  MathSciNet  Google Scholar 

  21. Hartmann S., Bier W.: High-order time integration applied to metal powder plasticity. Int. J. Plast. 24(1), 17–54 (2008)

    Article  Google Scholar 

  22. Hartmann S., Lührs G., Haupt P.: An efficient stress algorithm with applications in viscoplasticity and plasticity. Int. J. Numer. Methods Eng. 40, 991–1013 (1997)

    Article  Google Scholar 

  23. Hartmann S., Neff P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)

    Article  MathSciNet  Google Scholar 

  24. Hartmann S., Quint K.J., Arnold M.: On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput. Methods Appl. Mech. Eng. 198, 178–193 (2008)

    Article  MathSciNet  Google Scholar 

  25. Hartmann S., Quint K.J., Hamkar A.-W.: Displacement control in time-adaptive non-linear finite-element analysis. J. Appl. Math. Mech. 88(5), 342–364 (2008)

    MathSciNet  Google Scholar 

  26. Hartmann, S: A rigorous application of the method of vertical lines to coupled systems in finite element analysis. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, volume 120 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 161–175. Springer, Berlin/Heidelberg (2013)

  27. Haupt P.: Continuum Mechanics and Theory of Materials. 2nd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  28. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    Google Scholar 

  29. Hoyer W., Schmidt J.W.: Newton-type decomposition methods for equations arising in network analysis. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 64, 397–405 (1984)

    Article  MathSciNet  Google Scholar 

  30. Hughes T.J.R., Pister K.S.: Consistent linearization in mechanics of solids and structures. Comput. Struct. 8, 391–397 (1979)

    Article  MathSciNet  Google Scholar 

  31. Kelley C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM Society for Industrial and Applied Mathematics, Philadelphia (1995)

    Book  Google Scholar 

  32. Korelc J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)

    Article  Google Scholar 

  33. Korelc J.: Automation of primal and sensitivity analysis of transient coupled problems. Comput. Mech. 44(5), 631–649 (2009)

    Article  MathSciNet  Google Scholar 

  34. Kreisselmeier G., Steinhauser R.: Systematische Auslegung von Reglern durch Optimierung eines vektoriellen Gütekriteriums. Regelungstechnik 3, 76–79 (1979)

    Google Scholar 

  35. Kulkarni D.V., Tortorelli D., Wallin M.: A Newton–Schur alternative to the consistent tangent approach in computational plasticity. Comput. Methods Appl. Mech. Eng. 196, 1169–1177 (2007)

    Article  Google Scholar 

  36. Lion A.: Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16, 469–494 (2000)

    Article  Google Scholar 

  37. Liu C.H., Hofstetter G., Mang H.A.: 3d finite element analysis of rubber-like materials at finite strains. Eng. Comput. 11, 111–128 (1994)

    Article  Google Scholar 

  38. Miehe C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134, 223–240 (1996)

    Article  MathSciNet  Google Scholar 

  39. Naumann U.: The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2012)

    Google Scholar 

  40. Netz, T.: High-order space and time discretization scheme applied to problems of finite thermo-viscoelasticity. Ph.D.-thesis, report no. 3/2013, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2013)

  41. Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  42. Perez-Foguet A., Rodriguez-Ferran A., Huerta A.: Numerical differentiation for local and global tangent operators in computational plasticity. Comput. Methods Appl. Mech. Eng. 189(1), 277–296 (2000)

    Article  Google Scholar 

  43. Perez-Foguet A., Rodriguez-Ferran A., Huerta A.: Numerical differentiation for non-trivial consistent tangent matrices: an application to the MRS-Lade model. Int. J. Numer. Methods Eng. 48, 159–184 (2000)

    Article  Google Scholar 

  44. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in FORTRAN. 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  45. Quint, K.J.: Thermomechanically coupled processes for functionally graded materials: experiments, modelling, and finite element analysis using high-order DIRK-methods. Ph.D.-thesis, report no. 2/2012, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2012)

  46. Quint K.J., Hartmann S., Rothe S., Saba N., Steinhoff K.: Experimental validation of high-order time-integration for non-linear heat transfer problems. Comput. Mech. 48, 81–96 (2011)

    Article  Google Scholar 

  47. Rabbat N.B.G., Sangiovanni-Vincentelli A.L., Hsieh H.Y.: A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain. IEEE Trans. Circuits Syst. 26, 733–740 (1979)

    Article  MathSciNet  Google Scholar 

  48. Simo J.C., Taylor R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118 (1985)

    Article  Google Scholar 

  49. Simo J.C., Taylor R.L.: Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  Google Scholar 

  50. Simo J.C., Taylor R.L., Pister K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    Article  MathSciNet  Google Scholar 

  51. Truesdell C., Noll W.: The Non-linear Field Theories of Mechanics, volume III/3 of Encyclopedia of Physics. Springer, Berlin (1965)

    Google Scholar 

  52. Tsakmakis C., Willuweit A.: A comparative study of kinematic hardening rules at finite deformations. Int. J. Nonlinear Mech. 39, 539–554 (2004)

    Article  Google Scholar 

  53. Utke J., Naumann U., Fagan M., Tallent N., Strout M., Heimbach P., Hill C., Wunsch C.: OpenAD/F: a modular, open-source tool for automatic differentiation of fortran codes. ACM Trans. Math. Softw. 34(4), 1–34 (2008)

    Article  Google Scholar 

  54. Utke, J., Naumann, U., and Lyons, A.: OpenAD/F: User Manual (2013)

  55. Wittekindt, J.: Die numerische Lösung von Anfangs-Randwertproblemen zur Beschreibung inelastischen Werkstoffverhaltens. Doctoral thesis, Department of Mathematics, University of Darmstadt (1991)

  56. Wolfram, S: The Mathematica Book. Wolfram Media, Incorporated, Champaign, IL (2003)

  57. Wriggers P.: Nichtlineare Finite-Elemente Methoden. Springer, Berlin (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hartmann.

Additional information

We would like to thank the German Research Foundation (DFG) for financial support of this research project (HA-2024/7-2). Additionally, we would like to thank Professor Jože Korelc for helpful discussions. Furthermore, the authors acknowledge helpful discussions about the implementation of OpenAD with Jean Utke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothe, S., Hartmann, S. Automatic differentiation for stress and consistent tangent computation. Arch Appl Mech 85, 1103–1125 (2015). https://doi.org/10.1007/s00419-014-0939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0939-6

Keywords

Navigation