Skip to main content
Log in

Vibration analysis of a rotating Timoshenko beam with internal and external flexible connections

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An analytical method is presented to determine the vibration characteristics of a rotating Timoshenko beam with variable cross section and intermediate flexible connections using the differential transform method. Based on the application of Timoshenko beam theory on separate beams and the compatibility requirements on each connection point, the correlations between every two adjacent spans are obtained. The formulation is extended to a point where it would be able to evaluate the cases with internal and external flexible connections. The results will be validated against those reported in the literature and compared with the ones from the modal test. A number of parametric studies are conducted to assess the stiffness of elastic connections, rotating speed, hub radius and tapered ratio effects on the beam natural frequencies and mode shapes. It is observed that by changing the stiffness of the intermediate springs, the general formulation developed here can cover a large array of problems such as cracked or intermediately constrained beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thakkar D., Ganguli R.: Helicopter vibration reduction in forward fight with induced shear based piezoceramic actuation. Smart Mater. Struct 30(3), 599–608 (2004)

    Article  Google Scholar 

  2. Kumar S., Roy N., Ganguli R.: Monitoring low cycle fatigue damage in turbine blades using vibration characteristics. Mech. Syst. Signal Process. 21(1), 480–501 (2007)

    Article  Google Scholar 

  3. Hodges D.H., Rutkowski M.J.: Free vibration analysis of rotating beams by a variable order finite element method. Am. Inst. Aeronaut. Astron. J. 19, 1459–1466 (1981)

    Article  MATH  Google Scholar 

  4. Rao S.S., Gupta R.S.: Finite element vibration analysis of rotating Timoshenko beams. J. Sound Vib. 242(1), 103–124 (2001)

    Article  MATH  Google Scholar 

  5. Gunda J.B., Ganguli R.: New rational interpolation functions for finite element analysis of rotating beams. Int. J. Mech. Sci. 50, 578–588 (2008)

    Article  MATH  Google Scholar 

  6. Gunda J.B., Ganguli R.: Stiff-String basis functions for vibration analysis of high speed rotating beams. J. Appl. Mech. 75, 245021–245025 (2008)

    Article  Google Scholar 

  7. Gunda J.B., Gupta R.K., Ganguli R.: Hybrid stiff-string polynomial basis functions for vibration analysis of high speed rotating beams. Comput. Struct. 87(3–5), 254–265 (2009)

    Article  Google Scholar 

  8. Bazoune A.: Effect of tapering on natural frequencies of rotating beams. Shock Vib. 14, 169–179 (2007)

    Article  Google Scholar 

  9. Vinod K.G., Gopalakrishnan S., Ganguli R.: Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int. J. Solids Struct. 44(18–19), 5875–5893 (2007)

    Article  MATH  Google Scholar 

  10. Wang G., Wereley N.M.: Free vibration analysis of rotating blades with Uniform tapers. Am. Inst. J. Aeronaut. Astron. 42(12), 2429–2437 (2004)

    Article  Google Scholar 

  11. Kuang J.H., Huang B.W.: The effect of blade cracks on mode localization in rotating bladed disks. J. Sound Vibr. 227(1), 85–103 (1999)

    Article  Google Scholar 

  12. Rand O.: Experimental study of the natural frequencies of rotating thin-walled composite blades. Thin-Walled Struct. 21, 191–207 (1995)

    Article  Google Scholar 

  13. Surace G., Anghel V., Mares C.: Coupled bending–bending–torsion vibration analysis of rotating pre-twisted blades: an integral formulation and numerical examples. J. Sound Vib. 206, 473–486 (1997)

    Article  Google Scholar 

  14. Young T.H., Lin T.M.: Stability of rotating pre-twisted tapered beams with randomly varying speed. ASME J. Vib. Acoust. 120(2), 784–790 (1998)

    Article  Google Scholar 

  15. Kar R.C., Neogy S.: Stability of a rotating, pre-twisted, non-uniform cantilever beam with tip mass and thermal gradient subjected to a non-conservative force. Comput. Struct. 33(2), 499–507 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chondros T.G., Dimarogonas A.D.: Dynamic sensitivity of structures to cracks. J. Vib. Acoust. Stress Reliab. Des. 111, 251–256 (1989)

    Article  Google Scholar 

  17. Chondros T.G.: The continuous crack flexibility method for crack identification. Fatigue Fract. Eng. Mater. Struct. 24, 643–650 (2001)

    Article  Google Scholar 

  18. Panteliou S.D., Chondros T.G., Argyrakis V.C., Dimarogonas A.D.: Damping factor as an indicator of crack severity. J. Sound Vib. 241(2), 235–245 (2001)

    Article  Google Scholar 

  19. Chang C.C., Chen L.W.: Damage detection of cracked thick rotating blades by a spatial wave let based approach. Appl. Acoust. 65(11), 1095–1111 (2004)

    Article  Google Scholar 

  20. Kim S.S., Kim J.H.: Rotating composite beam with a breathing crack. Compos. Struct. 60(1), 83–90 (2003)

    Article  Google Scholar 

  21. Cheng Y., Zhigang Y., Wu X., Yuan Y.: Vibration analysis of a cracked rotating tapered beam using the p-version finite element method. Finite Elem. Anal. Des. 47, 825–834 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ariaei A., Ziaei-Rad S., Malekzadeh M.: Dynamic response of a multi-span Timoshenko beam with internal and external flexible constraints subject to a moving mass. Arch. Appl. Mech. 83, 1257–1272 (2013)

    Article  MATH  Google Scholar 

  23. Loya J.A., Rubio L., Fernández-Sáez J.: Natural frequencies for bending vibrations of Timoshenko cracked beams. J. Sound Vib. 290, 640–653 (2006)

    Article  Google Scholar 

  24. Bazoune A., Khulief Y.A., Stephen N.G.: Further results for modal characteristics of rotating tapered Timoshenko beams. J. Sound Vib. 219(3), 157–174 (1999)

    Article  Google Scholar 

  25. Masoud A.A., Al-Said S.: A new algorithm for crack localization in a rotating Timoshenko beams. J. Vib. Control 15, 1541–1561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yokoyama T.: Free vibration characteristics of rotating Timoshenko beam. Int. J. Mech. Sci. 30, 743–755 (1988)

    Article  MATH  Google Scholar 

  27. Khulief Y.A., Bazoune A.: Frequencies of rotating tapered Timoshenko beams with different boundary conditions. Comput. Struct. 42, 781–795 (1992)

    Article  Google Scholar 

  28. Lee S.Y., Lin S.M.: Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root. J. Appl. Soft Comput. 61, 949–955 (1994)

    MATH  Google Scholar 

  29. Du H., Lim M.K., Liew K.K.: A power series solution for vibration of a rotating Timoshenko beams. J. Sound Vib. 175, 505–523 (1994)

    Article  MATH  Google Scholar 

  30. Nagaraj V.T.: Approximate formula for the frequencies of a rotating Timoshenko beam. J. Aircr. 33, 637–639 (1996)

    Article  Google Scholar 

  31. Lin S.C., Hsiao K.M.: Vibration analysis of a rotating Timoshenko beam. J. Sound Vib. 240, 303–322 (2001)

    Article  MATH  Google Scholar 

  32. Kaya M.O.: Free vibration analysis of a rotating Timoshenko beam by Differential Transformation Method. Aircr. Eng. Aerosp. Technol. 78, 194–203 (2006)

    Article  Google Scholar 

  33. Choi S.T., Chou Y.T.: Vibration analysis of elastically supported turbo machinery blades by the modified differential quadrature methods. J. Sound Vib. 240, 937–953 (2001)

    Article  Google Scholar 

  34. Downs B.: Transverse vibration of cantilever beam having unequal breadth and depth tapers. J. Appl. Soft Comput. 44, 737–742 (1977)

    Google Scholar 

  35. Irie T., Yamada G., Takahashi I.: Determination of the steady state response of a Timoshenko beam of varying section by the use of the spline interpolation technique. J. Sound Vibr. 63, 287–295 (1979)

    Article  MATH  Google Scholar 

  36. Irie T., Yamada G., Takahashi I.: Vibration and stability of a non-uniform Timoshenko beam subjected to follower force. J. Sound Vibr. 70, 503–512 (1980)

    Article  MATH  Google Scholar 

  37. Lee S.Y., Lin S.M.: Exact vibration solutions for non-uniform Timoshenko beams with attachments. AIAA J. 30, 2930–2934 (1992)

    Article  MATH  Google Scholar 

  38. Yaradimoglu B.: Vibration analysis of rotating tapered Timoshenko beam by a new finite element model. Shock Vib. 13, 117–126 (2006)

    Article  Google Scholar 

  39. Thomas J., Abbas B.A.H.: Finite element model for dynamic analysis of Timoshenko beam. J. Sound Vibr. 41, 291–299 (1975)

    Article  Google Scholar 

  40. Friedman Z., Kosmatka J.B.: An improved two-node Timoshenko beam finite element. Comput. Struct. 47(3), 473–481 (1993)

    Article  MATH  Google Scholar 

  41. Laura P.A.A., Gutierrez R.H.: Analysis of vibrating Timoshenko beams using the method of differential quadrature. Shock Vib. 1(1), 89–93 (1993)

    Article  Google Scholar 

  42. Stafford R.O., Giurgiutiu V.: Semi-analytic method for rotating Timoshenko beams. Int. J. Mech. Sci. 17, 719–727 (1975)

    Article  MATH  Google Scholar 

  43. Ozgumus O.O., Kaya M.O.: Flap wise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J. Sound Vib. 289, 413–420 (2006)

    Article  Google Scholar 

  44. Zhou J.K.: Differential Transformation and Its Application for Electrical Circuits. Wuhan, Huazhong University Press, Wuhan (1986)

    Google Scholar 

  45. Mei C.: Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput. Struct. 86, 1280–1284 (2008)

    Article  Google Scholar 

  46. Chen C.K., Ju S.P.: Application of differential transformation to transient advective–dispersive transport equation. J. Appl. Math. Comput. 155, 25–38 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  47. Arikoglu A., Ozkol I.: Solution of boundary value problems for integro-differential equations by using differential transformation method. J. Appl. Math. Comput. 168, 1145–1158 (2004)

    Article  MathSciNet  Google Scholar 

  48. Bert C.W., Zeng H.: Analysis of axial vibration of compound bars by differential transformation method. J. Sound Vib. 275, 641–647 (2004)

    Article  Google Scholar 

  49. Ayaz F.: Application of differential transforms method to differential–algebraic equations. J. Appl. Math. Comput. 152, 648–657 (2004)

    Article  MathSciNet  Google Scholar 

  50. Ho S.H., Chen C.K.: Free transverse vibration of an axially loaded non-uniform sinning twisted Timoshenko beam using differential transform. Int. J. Mech. Sci. 48, 1323–1331 (2006)

    Article  MATH  Google Scholar 

  51. Ertürk V.S., Momani S.: Comparing numerical methods for solving fourth-order boundary value problems. J. Appl. Math. Comput. 188, 1963–1968 (2007)

    Article  MATH  Google Scholar 

  52. Kosmatka J.B.: An improved two-node finite element for stability and natural frequencies of axially loaded Timoshenko beams. Comput. Struct. 57(1), 141–149 (1995)

    Article  MATH  Google Scholar 

  53. Shames I.H., Dym C.L.: Energy and Finite Element Methods in Structural Mechanics, Chap 4. McGraw-Hill, New York (1985)

    Google Scholar 

  54. Thomson W.T., Dahleh M.D.: Theory of Vibration with Applications, 5th edn. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  55. Lee S.Y., Lin S.M.: Bending vibrations of rotating non-uniform Timoshenko beams with an elastically restrained root. J. Appl. Mech. 61, 949–955 (1994)

    Article  MATH  Google Scholar 

  56. Khaji N., Shafiei M., Jalalpour M.: Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. Int. J. Mech. Sci. 51, 667–681 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ariaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, S., Ariaei, A. Vibration analysis of a rotating Timoshenko beam with internal and external flexible connections. Arch Appl Mech 85, 555–572 (2015). https://doi.org/10.1007/s00419-014-0930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0930-2

Keywords

Navigation