Skip to main content
Log in

Nonlinear elasticity, viscosity and damage in open-cell polymeric foams

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Of interest, in this work, is the behavior of open-cell polymer foams under compression. In a recent work by Del Piero and Pampolini (Continuum Mech Thermodyn 24:181–199, 2012), a model coupling nonlinear elasticity and viscosity was introduced to describe the response of a polyurethane foam subjected to uniaxial cyclic compression. Inelastic effects were attributed to the viscous properties of the foam, while strain localization and hysteresis were attributed to the nonconvexity of the strain energy density. But the model did not reproduce the response curves after the first loading–unloading cycle. Here, the model is extended by taking into account the damage of the foam. A simple phenomenological one parameter damage law is used to describe the damage occurring during the first loading cycle. An accurate identification procedure for the material constants is also developed, and the interaction of viscosity and damage in both monotonic and cyclic deformation processes is discussed. In spite of the one dimensional formulation, the model permits a precise analysis of the main phenomena which determine the complex behavior of the foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardenhagen S.G., Brydon A.D., Guilkey J.E.: Insight into the physics of foam densification via numerical simulation. J. Mech. Phys. Solids 53, 597–617 (2005)

    Article  MATH  Google Scholar 

  2. Beatty M.F., Krishnaswamy S.: A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 48, 1931–1965 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Del Piero G., Pampolini G.: The influence of viscosity on the response of open-cell polymeric foams in uniaxial compression: experiments and theoretical model. Continuum Mech. Thermodyn. 24, 181–199 (2012)

    Article  Google Scholar 

  4. Diani J., Fayolle B., Gilormini P.: A review on the Mullins effect. Eur. Polym. J. 45, 601–612 (2009)

    Article  Google Scholar 

  5. Dorfmann A., Ogden R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40, 2699–2714 (2003)

    Article  MATH  Google Scholar 

  6. Ericksen J.L.: Equilibrium of bars. J. Elast. 5, 191–201 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties, second edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  8. Gioia G., Wang Y., Cuitiño A.M.: The energetics of heterogeneous deformation in open-cell solid foams. Proc. R. Soc. Lond. A 457, 1079–1096 (2001)

    Article  MATH  Google Scholar 

  9. Gong L., Kyriakides S.: Compressive response of open-cell foams. Part ii: initiation and evolution of crushing. Int. J. Solids Struct. 42, 1381–1399 (2005)

    Article  MATH  Google Scholar 

  10. Gong L., Kyriakides S., Jang W.Y.: Compressive response of open-cell foams. Part i: morphology and elastic properties. Int. J. Solids Struct. 42, 1355–1379 (2005)

    Article  MATH  Google Scholar 

  11. Gong L., Kyriakides S., Triantafyllidis N.: On the stability of Kelvin cell foams under compressive loads. J. Mech. Phys. Solids 42, 1381–1399 (2005)

    MATH  Google Scholar 

  12. Gurtin M., Francis E.: Simple rate independent models for damage. J. Spacecr. 18, 285–286 (1981)

    Article  Google Scholar 

  13. Haupt P., Sedlan R.: Viscoplasticity of elastomeric materials: experimental facts and constitutive modeling. Arch. Appl. Mech. 71, 89–109 (2001)

    Article  MATH  Google Scholar 

  14. Holmström K., Petersson J.: A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Appl. Math. Comput. 216, 31–61 (2002)

    Article  Google Scholar 

  15. Hooke R., Jeeves T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8, 212–229 (1960)

    Article  Google Scholar 

  16. Jang W.Y., Kraynik A.M., Kyriakides S.: On the microstructure of open-cell foams and its effect on elastic properties. Int. J. Solids Struct. 45, 1845–1875 (2008)

    Article  MATH  Google Scholar 

  17. Kachanov L.M.: Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers, The Hague (1986)

    Book  MATH  Google Scholar 

  18. Ko W.L.: Deformations of foamed elastomers. J. Cell. Plast. 1, 45–50 (1965)

    Article  Google Scholar 

  19. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Lion A.: A constitutive model for carbon black filled rubber. experimental investigations and mathematical representations. Continuum Mech. Thermodyn. 8, 153–169 (1996)

    Article  Google Scholar 

  21. Miehe C., Keck J.: Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J. Mech. Phys. Solids 48, 323–365 (2000)

    Article  MATH  Google Scholar 

  22. Mills N.J.: The high strain mechanical response of the wet kelvin model for open-cell foams. Int. J. Solids Struct. 44, 51–65 (2007)

    Article  MATH  Google Scholar 

  23. Mullins L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969)

    Article  Google Scholar 

  24. Ogden R.W., Roxburg D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. Roy. Soc. Lond. A 455, 2861–2877 (1999)

    Article  MATH  Google Scholar 

  25. Pampolini, G.: Les propriétés mécaniques des mousses polymériques à cellules ouvertes: expériences, modéle théorique et simulations numériques. Ph.D. thesis, Laboratoire de Mécanique et Acoustique CNRS, Université de Provence, Università di Ferrara (2010)

  26. Pampolini G., Del Piero G.: Strain localization in open-cell polyurethane foams: experiments and theoretical model. J. Mech. Mater. Struct 3, 969–981 (2008)

    Article  Google Scholar 

  27. Puglisi G.: Hysteresis in multi-stable lattices with non-local interactions. J. Mech. Phys. Solids 54, 2060–2088 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raous M.: Détermination du module d’Young opérationnel d’un corps viscoléastique à partir de sa courbe de relaxation. Rheol. Acta 13, 1233–1237 (1974)

    Article  Google Scholar 

  29. Romero P.A., Zheng S.F., Cuitiño A.M.: Modeling the dynamic response of visco-elastic open-cell foams. J. Mech. Phys. Solids 58, 1916–1943 (2008)

    Article  Google Scholar 

  30. Simo J.: On a fully three dimensional finite strain viscoelastic damage model: Formulation and computation aspects. Comput. Mech. Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MATH  Google Scholar 

  31. Sorrentino L., Aurelia M., Iannace S.: A simple method to predict high strain rates mechanical behavior of low interconnected cell foams. Polym. Test. 26, 878–885 (2000)

    Article  Google Scholar 

  32. Sullivan R.M., Ghosn L.J., Lerch B.A.: A general tetrakaidecahedron model for open-celled foams. Int. J. Solids Struct. 45, 1754–1765 (2008)

    Article  MATH  Google Scholar 

  33. Viot P., Iordanoff I., Bernard D.: Multiscale description of polymeric foam behavior: a new approach based on discrete element modeling. Polym. Sci. 50, 679–689 (2008)

    Google Scholar 

  34. Wang Y., Cuitiño A.M.: Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. Solids Struct. 39, 3777–3796 (2002)

    Article  Google Scholar 

  35. Warren W., Kraynik A.M.: The non linear elastic properties of open-cell foams. ASME J. Appl. Mech. 58, 376–381 (1991)

    Article  MATH  Google Scholar 

  36. White S., Kim S., Bajaj A., Davis P.: Experimental techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane foam. Nonlinear Dyn. 22, 281–313 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Pampolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pampolini, G., Raous, M. Nonlinear elasticity, viscosity and damage in open-cell polymeric foams. Arch Appl Mech 84, 1861–1881 (2014). https://doi.org/10.1007/s00419-014-0891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0891-5

Keywords

Navigation