Skip to main content
Log in

Damage estimation in vibrating beams from time domain experimental measurements

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The problem of damage detection in beams from time domain vibration measurements is investigated. A cantilever beam subjected to dynamic point loadings is considered. A measurable damage in the form of a crack-like defect is introduced into the beam. Using Bayesian principles, a particle filtering algorithm applied on the experimentally measured tip accelerations is used to estimate the changes in damping and in the flexural rigidity of the beam. Subsequently, the size and location of the crack are estimated using principles of fracture mechanics and particle filtering. The proposed method bypasses the need for baseline measurements of the vibration response of the undamaged beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics; a literature review. Report. Los Alamos National Laboratory, Los Alamos, New Mexico (1996)

  2. Salawu O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  3. Farrar C.R., Scott W., Doebling S.W., David A.N.: Vibration-based structural damage identification. Phil. Trans. R. Soc. Lond. 359, 131–149 (2001)

    Article  MATH  Google Scholar 

  4. Sohn, H, Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R.: A review of structural health monitoring literature: 1996–2001. Report. Los Alamos National Laboratory, New Mexico (2003)

  5. Cawley P., Adams R.D.: The location of defects in structures from measurement of natural frequencies. J. Strain Anal. 14, 49–57 (1979)

    Article  Google Scholar 

  6. Messina A., Williams E.J., Contursi T.: Structural damage detection by sensitivity and statistical-based method. J. Sound Vib. 216(5), 791–808 (1998)

    Article  Google Scholar 

  7. Pandey A.K., Biswas M., Samman M.M.: Damage detection from changes in mode shapes. J. Sound Vib. 145(2), 321–332 (1991)

    Article  Google Scholar 

  8. Shi Z.Y., Law S.S.: Structural damage detection from modal strain energy change. J. Eng. Mech. 126(12), 1216–1223 (2002)

    Article  Google Scholar 

  9. Cattarius J., Inman D.J.: Time domain analysis for damage detection in smart structures. Mech. Syst. Signal Process. 11(3), 409–423 (1997)

    Article  Google Scholar 

  10. Koh C.G., Hong B., Liaw C.Y.: Parameter identification of large structural systems in time domain. J. Struct. Eng. ASCE 126(8), 957–963 (2000)

    Article  Google Scholar 

  11. Majumder L., Manohar C.S.: A time domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source. J. Sound Vib. 268(4), 699–716 (2003)

    Article  Google Scholar 

  12. Majumder L., Manohar C.S.: Nonlinear reduced models for beam damage detection using data on moving oscillator-beam interactions. Comp. Struct. 82, 301–314 (2004)

    Article  Google Scholar 

  13. Gudmundson P.: Eigenfrequency changes of structures due to cracks, notches or other geometrical changes. J. Mech. Phys. Solids 30, 339–353 (1982)

    Article  Google Scholar 

  14. Dimarogonas A.D., Papadopoulis C.: Vibrations of cracked shafts in bending. J. Sound Vib. 91, 583–593 (1983)

    Article  MATH  Google Scholar 

  15. Morassi A.: Crack induced changes in eigenfrequencies of beam structures. J. Eng. Mech. ASCE 119, 1798–1803 (1993)

    Article  Google Scholar 

  16. Lee H.P., Ng T.Y.: Natural frequencies and modes for the flexural vibrations of a cracked beam. Appl. Acoust. 42, 151–163 (1994)

    Article  Google Scholar 

  17. Chondros T.G., Dimarogonas D.: A continuous cracked beam vibration theory. J. Sound Vib. 215, 17–34 (1998)

    Article  MATH  Google Scholar 

  18. Ismail F., Ibrahim A., Martin H.R.: Identification of fatigue cracks from vibration testing. J. Sound Vib. 40(2), 305–317 (1990)

    Article  Google Scholar 

  19. Ostachowicz W.M., Krawczuk M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150(2), 191–201 (1991)

    Article  Google Scholar 

  20. Li Q.S.: Vibratory characteristics of Timoshenko beams with arbitrary number of cracks. J. Eng. Mech. ASCE 129(11), 1355–1359 (2003)

    Article  Google Scholar 

  21. Dimarogonas A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)

    Article  Google Scholar 

  22. Shen M.H., Pierre C.: Free Vibrations of beams with single-edge crack. J. Sound Vib. 170, 237–259 (1994)

    Article  MATH  Google Scholar 

  23. Armon D., Ben-Haim Y., Braun S.: Crack detection in beams by rank-ordering of eigenfrequency shift. Mech. Syst. Signal Process. 8, 81–91 (1994)

    Article  Google Scholar 

  24. Lin H.P.: Direct and inverse methods on free vibration analysis of simply supported beams with a crack. Eng. Struct. 26, 427–436 (2004)

    Article  Google Scholar 

  25. Shim M.B., Suh M.W.: A study on multiobjective optimization technique for inverse and crack identification problems. Inverse Probl. Eng. 10, 441–465 (2002)

    Article  Google Scholar 

  26. Rubio L.: An efficient method for crack identification in simply supported Euler–Bernoulli beams. J. Vib. Acoust. ASME 131, 51001.1–51001.6 (2009)

    Article  Google Scholar 

  27. Bamnios Y., Douka E., Trochidis A.: Crack identification in beam structures using mechanical impedance. J. Sound Vib. 256(2), 287–297 (2002)

    Article  Google Scholar 

  28. Patil D.P., Maiti S.K.: Detection of multiple cracks using frequency measurements. Eng. Fract. Mech. 70, 1553–1572 (2003)

    Article  Google Scholar 

  29. Dharmaraju N., Tiwari R., Talukdar S.: Identification of an open crack model in a beam based on force-response measurements. Comp. Struct. 82, 167–179 (2004)

    Article  Google Scholar 

  30. Dilena M., Morassi A.: The use of anti-resonances for crack detection in beams. J. Sound Vib. 276, 195–214 (2004)

    Article  Google Scholar 

  31. Dilena M., Morassi A.: Damage detection in discrete vibrating structures. J. Sound Vib. 289, 830–850 (2006)

    Article  Google Scholar 

  32. Chang C.h.C.h., Chen L.W.: Vibration damage detection of a Timoshenko beam by spatial wavelet based approach. Appl. Acoust. 64, 1217–1240 (2003)

    Article  Google Scholar 

  33. Tian J., Li Z., Su X.: Crack detection in beams by wavelet analysis of transient flexural waves. J. Sound Vib. 261(4), 715–727 (2003)

    Article  Google Scholar 

  34. Sinha J.K., Friswell M.I., Edwards S.: Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 251(1), 13–38 (2002)

    Article  Google Scholar 

  35. Law S.S., Lu Z.R.: Crack identification in beam from dynamic responses. J. Sound Vib. 285, 967–987 (2005)

    Article  Google Scholar 

  36. Maybeck P.: Stochastic Models, Estimation and Control. Academic Press, UK (1979)

    MATH  Google Scholar 

  37. Kalman R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82(D), 35–45 (1960)

    Article  Google Scholar 

  38. Hoshiya M., Saito E.: Structural identification by extended Kalman filter. J. Eng. Mech. ASCE 110, 1757–1770 (1984)

    Article  Google Scholar 

  39. Ghanem R., Shinozuka M.: Structural system identification I Theory. J. Eng. Mech. ASCE 121(2), 255–264 (1995)

    Article  Google Scholar 

  40. Shinozuka M., Ghanem R.: Structural system identification II: experimental verification. J. Eng. Mech. ASCE 121, 265–273 (1995)

    Article  Google Scholar 

  41. Wang D., Haldar A.: System identification with limited observations and without input. J. Eng. Mech. ASCE 123(5), 504–511 (1997)

    Article  Google Scholar 

  42. Haldar A.: Is the inverse problem technique appropriate for structural health assessment. Curr. Sci. 9(8), 1187–1195 (2009)

    Google Scholar 

  43. Gordon N.J., Salmond N.J.: Novel approach to nonlinear/nonGaussian Bayesian state estimation. IEE Proc.-F 140(2), 107–113 (1993)

    Google Scholar 

  44. Nasrellah H.A., Manohar C.S.: A particle approach for structural system identification in vehicle-structure interaction problems. J. Sound Vib. 329, 1289–1309 (2000)

    Article  Google Scholar 

  45. Nasrellah H.A., Manohar C.S.: Particle filters for structural system identification using multiple test and sensor data: a combined computational and experimental study. Struct. Control Health Monit. 18(1), 99–120 (2011)

    Google Scholar 

  46. Rangaraj, P., Chaudhuri, A., Gupta, S.: Polynomial chaos in bootstrap filtering for system identification. In: Chakraborty, S., Bhattacharya, G. (Eds.) Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management, pp. 653–667. Springer, Berlin (2013)

  47. Brandon J.A.: Some insights into the dynamics of defective structures. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 212, 441–454 (1998)

    Article  Google Scholar 

  48. Kisa M., Brandon J.A.: The effects of closure of cracks on the dynamics of a cracked cantilever beam. J. Sound Vib. 238, 1–18 (2000)

    Article  Google Scholar 

  49. Gundmundson P.: The dynamic behavior of slender structures with cross-sectional cracks. J. Mech. Phys. Solids 31(4), 329–345 (1983)

    Article  Google Scholar 

  50. Springer W.T., Lawrence K.L., Lawley T.J.: Damage assessment based on the structural frequency-response function. J. Exp. Mech. 28(1), 34–37 (1988)

    Article  Google Scholar 

  51. Krawczuk M., Zak A., Ostachowicz W.: Elastic beam finite element with a transverse elasto-plastic crack. Finite Elem. Anal. Des. 34, 61–73 (2000)

    Article  MATH  Google Scholar 

  52. Rashid M.F., Banerjee A.: Implementation and validation of a triaxiality dependent cohesive zone model: experiments and simulation. Int. J. Fract. 181, 227–239 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokale, B., Gupta, S. Damage estimation in vibrating beams from time domain experimental measurements. Arch Appl Mech 84, 1715–1737 (2014). https://doi.org/10.1007/s00419-014-0878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0878-2

Keywords

Navigation