Skip to main content
Log in

A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a unified Chebyshev–Ritz formulation is presented to investigate the vibrations of composite laminated deep open shells with various shell curvatures and arbitrary restraints, including cylindrical, conical and spherical ones. The general first-order shear deformation shell theory is employed to include the effects of rotary inertias and shear deformation. Under the current framework, regardless of boundary conditions, each of displacements and rotations of the open shells is invariantly expressed as Chebyshev orthogonal polynomials of first kind in both directions. Then, the accurate solutions are obtained by using the Rayleigh–Ritz procedure based on the energy functional of the open shells. The convergence and accuracy of the present formulation are verified by a considerable number of convergence tests and comparisons. A variety of numerical examples are presented for the vibrations of the composite laminated deep shells with various geometric dimensions and lamination schemes. Different sets of classical constraints, elastic supports as well as their combinations are considered. These results may serve as reference data for future researches. Parametric studies are also undertaken, giving insight into the effects of elastic restraint parameters, fiber orientation, layer number, subtended angle as well as conical angle on the vibration frequencies of the composite open shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin G., Ye T., Chen Y., Su Z., Yan Y.: An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions. Compos. Struct. 106, 114–127 (2013)

    Article  Google Scholar 

  2. Jin G., Ye T., Ma X., Chen Y., Su Z., Xie X.: A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 75, 357–376 (2013)

    Article  Google Scholar 

  3. Qu Y., Long X., Wu S., Meng G.: A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos. Struct. 98, 169–191 (2013)

    Article  Google Scholar 

  4. Qatu M.S., Sullivan R.W., Wang W.C.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93(1), 14–31 (2010)

    Article  Google Scholar 

  5. Noor A.K., Burton W.S.: Assessment of computational models for multilayered composite shells. Appl. Mech. Rev. 43(4), 67–97 (1990)

    Article  Google Scholar 

  6. Qatu M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, part 1: laminated composite shells. Appl. Mech. Rev. 55(4), 325–349 (2002)

    Article  Google Scholar 

  7. Carrera E.: Theories and finite elements for multilayered anisotropic, composite plates and shells. Arch. Comput. Meth. Eng. 9(2), 87–140 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Qatu M.S.: Vibration of Laminated Shells and Plates, 1st edn. Elsevier Ltd, Amsterdam (2004)

    Google Scholar 

  9. Carrera E., Brischetto S., Nali P.: Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, 1st edn. Wiley, UK (2011)

    Book  Google Scholar 

  10. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRCpress, New York (2004)

    Google Scholar 

  11. Bardell N.S., Dunsdon J.M., Langley R.S.: Free vibration of thin, isotropic, open, conical panels. J. Sound Vib. 217(2), 297–320 (1998)

    Article  Google Scholar 

  12. Fazzolari F.A., Carrera E.: Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells. Compos. Struct. 101, 111–128 (2013)

    Article  Google Scholar 

  13. Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C.: Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput. Mech. 48, 13–25 (2011)

    Article  MATH  Google Scholar 

  14. Ferreira A.J.M., Carrera E., Cinefra M., Roque C.M.C., Polit O.: Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations. Compos. Part B: Eng. 42, 1276–1284 (2011)

    Article  Google Scholar 

  15. Reddy J.N., Asce M.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110, 794–809 (1984)

    Article  Google Scholar 

  16. Khdeir A.A., Reddy J.N.: Free and forced vibration of cross-ply laminated composite shallow arches. Int. J. Solids Struct. 34(10), 1217–1234 (1997)

    Article  MATH  Google Scholar 

  17. Qatu M.S.: Natural vibration of free, laminated composite triangular and trapezoidal shallow shells. Compos. Struct. 31, 9–19 (1995)

    Article  Google Scholar 

  18. Soldatos K.P., Shu X.P.: On the stress analysis of cross-ply laminated plates and shallow shell panels. Compos. Struct. 46, 333–344 (1999)

    Article  Google Scholar 

  19. Librescu L., Khdeir A.A., Frederick D.: A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: free vibration and buckling. Acta. Mech. 76, 1–33 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hosseini-Hashemi Sh., Atashipour S.R., Fadaee M., Girhammar U.A.: An exact closed-form procedure for free vibration analysis of laminated spherical shell panels based on Sanders theory. Arch Appl. Mech. 82, 985–1002 (2012)

    Article  Google Scholar 

  21. Leissia A.W., Chang J.D.: Elastic deformation of thick, laminated composite shells. Compos. Struct. 35, 153–170 (1996)

    Article  Google Scholar 

  22. Oktem A.S., Chaudhuri R.A.: Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels. Compos. Struct. 80, 489–03 (2007)

    Google Scholar 

  23. Viola E., Tornabene F., Fantuzzi N.: General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Compos. Struct. 95, 639–666 (2013)

    Article  Google Scholar 

  24. Singh A.V., Kumar V.: Vibration of laminated shells on quadrangular boundary. J. Aerosp. Eng. 9, 52–57 (1996)

    Article  Google Scholar 

  25. Qatu M.S.: Vibration analysis of cantilevered shallow shells with triangular trapezoidal planforms. J. Sound Vib. 191(2), 219–231 (1996)

    Article  Google Scholar 

  26. Qatu M.S.: Effect of inplane edge constraints on natural frequencies of simply supported doubly curved shallow shells. Thin-Walled Struct. 49, 797–803 (2011)

    Article  Google Scholar 

  27. Qatu M.S.: Vibration studies on completely free shallow shells having triangular and trapezoidal planforms. Appl. Acoust. 44, 215–231 (1995)

    Article  Google Scholar 

  28. Ye T., Jin G., Chen Y., Ma X., Su Z.: Free vibration analysis of laminated composite shallow shells with general elastic boundaries. Compos. Struct. 106, 470–490 (2013)

    Article  Google Scholar 

  29. Bardell N.S., Langley R.S., Dunsdon J.M., Aglietti G.S.: An hp finite element vibration analysis of open conical sandwich panels and conical sandwich frusta. J. Sound Vib. 226(2), 345–377 (1999)

    Article  Google Scholar 

  30. Chern Y.C., Chao C.C.: Comparison of natural frequencies of laminates by 3-D theory, part II: curved panels. J. Sound Vib. 230(5), 1009–1030 (2000)

    Article  Google Scholar 

  31. Selmane A., Lakis A.A.: Dynamic analysis of anisotropic open cylindrical shells. Comput. Struct. 62(1), 1–12 (1997)

    Article  MATH  Google Scholar 

  32. Singh B.N., Yadav D., Iyengar N.G.R.: Free vibration of laminated spherical panel with random material properties. J. Sound Vib. 224(4), 321–338 (2001)

    Article  Google Scholar 

  33. Soldatos K.P., Messina A.: The influence of boundary conditions and transverse shear on the vibration of angle-ply laminated plates, circular cylinders and cylindrical panels. Comput. Methods Appl. Mech. Eng. 190(18-19), 2385–2309 (2001)

    Google Scholar 

  34. Lee J.J., Yeom C.H., Lee I.: Vibration analysis of twisted cantilevered conical composite shells. J. Sound Vib. 225(5), 965–982 (2002)

    Article  Google Scholar 

  35. Hu X.X., Sakiyama T., Matsuda H., Morita C.: Vibration of twisted laminated composite conical shells. Int. J. Mech. Sci. 44, 1521–1541 (2002)

    Article  MATH  Google Scholar 

  36. Lim C.W., Liew K.M., Kitipornchai S.: Vibration of cantilevered laminated composite shallow conical shells. Int. J. Solids Struct. 35(15), 1695–1707 (1998)

    Article  MATH  Google Scholar 

  37. Zhao X., Liew K.M., Ng T.Y.: Vibration analysis of laminated composite cylindrical panels via a meshfree approach. Int. J. Solids Struct. 40(1), 161–180 (2003)

    Article  MATH  Google Scholar 

  38. Zhao X., Ng T.Y., Liew K.M.: Free vibration of two-side simply-supported laminated cylindrical panels via the mesh-free kp-Ritz method. Int. J. Solids Struct. 46(1), 123–142 (2004)

    MATH  Google Scholar 

  39. Bardell N.S., Dunsdon J.M., Langley R.S.: Free and forced vibration analysis of thin, laminated, cylindrical curved panels. Compos. Struct. 38, 453–462 (1997)

    Article  Google Scholar 

  40. Bercin A.N.: Natural frequencies of cross-ply laminated singly curved panels. Mech. Res. Commun. 23(2), 165–170 (1996)

    Article  MATH  Google Scholar 

  41. Messina A., Soldatos K.P.: Influence of edge boundary conditions on the free vibrations of cross-ply laminated circular cylindrical shell panels. J. Acoust. Soc. Am. 106(5), 2608–2620 (1999)

    Article  Google Scholar 

  42. Messina A., Soldatos K.P.: Vibration of completely free composite plates and cylindrical shell panels by a high-order theory. Int. J. Mech. Sci. 41, 891–918 (1999)

    Article  MATH  Google Scholar 

  43. Selmane A., Lakis A.A.: Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid. J. Fluid Struct. 11, 111–134 (1997)

    Article  Google Scholar 

  44. Lee S.J., Reddy J.N.: Vibration suppression of laminated shell structures investigated using higher-order shear deformation theory. Smart. Mater. Struct. 13, 1176–1194 (2004)

    Article  Google Scholar 

  45. Messina A.: Free vibration of multilayered doubly curved shells based on a mixed variational approach and global piecewise-smooth functions. Int. J. Solid Struct. 40, 3069–3088 (2003)

    Article  MATH  Google Scholar 

  46. Qatu M.S., Leissa A.W.: Free Vibrations of completely free doubly curved laminated composite shallow shells. J. Sound Vib. 151(1), 9–29 (1991)

    Article  Google Scholar 

  47. Li W.L.: Vibration analysis of rectangular plates with general elastic boundary supports. J. Sound Vib. 273, 619–35 (2004)

    Google Scholar 

  48. Talebitooti M.: Three-dimensional free vibration analysis of rotating laminated conical shells: layerwise differential quadrature (LW-DQ) method. Arch. Appl. Mech. 83, 765–781 (2013)

    Article  Google Scholar 

  49. Warburton T., Embree M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195, 3205–3223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sármány D., Izsák F., Vander Vegt J.J.W.: Optimal penalty parameters for symmetric discontinuous Galerkin Discretisations of the time-harmonic Maxwell equations. J. Sci. Comput. 44(3), 219–254 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Qu Y., Yuan G., Wu S., Meng G.: Three-dimensional elasticity solution for vibration analysis of composite rectangular parallelepipeds. Eur. J. Mech. A-Solid 42, 376–394 (2013)

    Article  Google Scholar 

  52. Zhou D., Cheung Y.K., Lo S.H., Au F.T.K.: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method. Comput. Methods Appl. Mech. Eng. 192, 1575–1589 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyong Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, T., Jin, G., Su, Z. et al. A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions. Arch Appl Mech 84, 441–471 (2014). https://doi.org/10.1007/s00419-013-0810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0810-1

Keywords

Navigation