Skip to main content
Log in

Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The effects of a piezoelectric layer on the stability of viscoelastic plates subjected to the follower forces are evaluated. The differential equation of motion of the viscoelastic plate with the piezoelectric layer is formulated using the two-dimensional viscoelastic differential constitutive relation and the thin plate theory. The weak integral form of the differential equations and the force boundary conditions are obtained. Using the element-free Galerkin method, the governing equation of the viscoelastic rectangular plate with elastic dilatation and Kelvin–Voigt distortion is derived, subjected to the follower forces coupled with the piezoelectric effect. A generalized complex eigenvalue problem is solved, and the force excited by the piezoelectric layer due to external voltage is modeled as the follower tensile force; this force is used to improve the stability of the non-conservative viscoelastic plate. For the viscoelastic plate with various boundary conditions, the results for the instability type and the critical loads are presented to show the variations in these factors with respect to the location of the piezoelectric layers and the applied voltages. The stability of the viscoelastic plates can be effectively improved by the determination of the optimal location for the piezoelectric layers and the most favorable voltage assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships. J. Acoust. Soc. Am. 87(3), 1144–1158 (1990)

    Article  Google Scholar 

  2. Yu Y.Y.: On the ordinary, generalized, and pseudo-variational equations of motion in nonlinear elasticity, piezoelectricity, and classical plate theory. J. Appl. Mech. Trans. ASME 62(2), 471–478 (1995)

    Article  MATH  Google Scholar 

  3. Tang Y.Y., Noor A.K., Xu K.: Assessment of computational models for thermo- electro-elastic multilayered plates. Comput. Struct. 61(5), 915–933 (1996)

    Article  Google Scholar 

  4. Batra R.C., Geng T.S.: Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators. Smart Mater. Struct. 10(5), 925–933 (2001)

    Article  Google Scholar 

  5. Krommer M.: Piezoelastic vibrations of composite Reissner–Mindlin-type plates. J. Sound Vib. 263(4), 871–891 (2003)

    Article  Google Scholar 

  6. Shu X.: Free vibration of laminated piezoelectric composite plates based on an accurate theory. Compos. Struct. 67(4), 375–382 (2005)

    Article  Google Scholar 

  7. Robaldo A., Carrera E., Benjeddou A.: A unified formulation for finite element analysis of piezoelectric adaptive plates. Comput. Struct. 84(22–23), 1494–1505 (2006)

    Article  Google Scholar 

  8. Zhang Z., Feng C., Liew K.M.: Three-dimensional vibration analysis of multilayered piezoelectric composite plates. Int. J. Eng. Sci. 4, 397–408 (2006)

    Article  Google Scholar 

  9. Kounadis A.N., Gantes C.J., Bolotin V.V.: An improved energy criterion for dynamic buckling of imperfection sensitive nonconservative systems. Int. J. Solids Struct. 38(42–43), 7487–7500 (2001)

    Article  MATH  Google Scholar 

  10. Shariyat M., Eslami M.R.: Dynamic buckling and postbuckling of imperfect orthotropic cylindrical shells under mechanical and thermal loads, based on the three dimensional theory of elasticity. J. Appl. Mech. Trans. ASME 66(2), 476–484 (1999)

    Article  Google Scholar 

  11. Chandrashekhara K., Bhatia K.: Active buckling control of smart composite plate finite element analysis. Smart Mater. Struct. 2, 31–39 (1993)

    Article  Google Scholar 

  12. Yao L.Q., Yu H.R.: Finite element method on bending control of thin plate with piezoelectric material. Chin. J. Comput. Mech. 16(3), 330–333 (1999)

    MathSciNet  Google Scholar 

  13. Heylinger P.: Exact solutions for simply supported laminated piezoelectric plates. J. Appl. Mech. 64, 299–306 (1997)

    Article  Google Scholar 

  14. Vel S.S., Batra R.C.: Exact solution for rectangular sandwich plates with embedded piezoelectric shear actuators. J. AIAA (American Institute of Aeronautics and Astronautics) 39(7), 1363–1373 (2001)

    Google Scholar 

  15. Chase J.G., Bhashayam S.: Optimal stabilization of plate buckling. Smart Mater. Struct. 8, 204–211 (1999)

    Article  Google Scholar 

  16. Wang Q.: On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24, 199–205 (2002)

    Article  Google Scholar 

  17. Wang Q.: Enhancing flutter and buckling capacity of column by piezoelectric layers. Int. J. Solids Struct. 39, 4167–4180 (2002)

    Article  MATH  Google Scholar 

  18. Ha S.K., Keilers C., Chang F.K.: Finite element analysis of composite structure containing distributed piezoceramic sensors and actuators. J. AIAA (American Institute of Aeronautics and Astronautics) 30(3), 772–780 (1992)

    MATH  Google Scholar 

  19. Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krysl P., Belytschki T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17, 26–35 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. El Ouatouati A., Johnson D.A.: A new approach for numerical modal analysis using the element-free method. Int. J. Numer. Methods Eng. 46, 1–27 (1999)

    Article  MATH  Google Scholar 

  22. Liu G.R., Chen L.: A mesh-free method for static and free vibration analyses of thin plates of complicated shape. J. Sound Vib. 241(5), 839–855 (2001)

    Article  Google Scholar 

  23. Flügge W.: Viscoelasticity. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  24. Wang Z.M., Ji Y.Z.: The dynamic stability of rectangular plates under the action of tangential follower force. J. Vib. Eng. 5(1), 78–83 (1992) (in Chinese)

    MathSciNet  Google Scholar 

  25. Wang, Z.M., Wang, Y., Zhou, Y.F.: Dynamic stability of cracked viscoelastic rectangular plate subjected to tangential follower force. J. Appl. Mech. Trans. ASME 75(6), 061018(1–12) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Z. & Zu, L. Stability of viscoelastic rectangular plate with a piezoelectric layer subjected to follower force. Arch Appl Mech 83, 495–507 (2013). https://doi.org/10.1007/s00419-012-0698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0698-1

Keywords

Navigation