Skip to main content
Log in

Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A model of piezoelectric rectangular thin plates with the consideration of the coupled thermo-piezoelectric-mechanical effect is established. Based on the von Karman large deflection theory, the nonlinear vibration governing equation is obtained by using Hamilton’s principle and the Rayleigh-Ritz method. The harmonic balance method (HBM) is used to analyze the first-order approximate response and obtain the frequency response function. The system shows non-linear phenomena such as hardening nonlinearity, multiple coexistence solutions, and jumps. The effects of the temperature difference, the damping coefficient, the plate thickness, the excited charge, and the mode on the primary resonance response are theoretically analyzed. With the increase in the temperature difference, the corresponding frequency jumping increases, while the resonant amplitude decreases gradually. Finally, numerical verifications are carried out by the Runge-Kutta method, and the results agree very well with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

L x :

length of the plate

L y :

width of the plate

h m :

thickness of the substrate material

hp:

thickness of the piezoelectric material

\(c_{ij}^{\rm{m}}\) :

stiffness coefficient of the substrate material

\(c_{ij}^{\rm{P}}\) :

stiffness coefficient of the piezoelectric material

E m :

Young’s modulus

υ m :

Poisson’s ratio

σ i :

normal stress

T ij :

shear stress

ε i :

normal strain

γ ij :

shear strain

e 31 :

piezoelectric constant

ε 33 :

dielectric permittivity

λ :

thermo-mechanical coupling constant

α:

coefficient of linear thermal expansion

d 3 :

thermal-piezoelectric coupling constant

E z :

electric field component

D z :

electric displacement component

V (t):

voltage

q(t):

surface charge of the piezoelectric layer

η :

entropy

a T :

material constant aT =cE/To

c E :

heat capacity

θ :

temperature difference

T o :

initial temperature

T c :

Curie temperature.

References

  1. ROUNDY, S. and WRIGHT, P. K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 13, 1131–1142 (2004)

    Article  Google Scholar 

  2. ROUNDY, S., WRIGHT, P. K., and RABAEY, J. A study of low-level vibrations as a power source for wireless sensor nodes. Computer Communications, 26, 1131–1144 (2003)

    Article  Google Scholar 

  3. BRENDON, H. A. and BASROUR, S. Coupled multiphysics finite element model and experimental testing of a thermo-magnetically triggered piezoelectric generator. Journal of Physics Conference Series, 773, 012024 (2017)

    Google Scholar 

  4. EMIL, S. R. and ROBERT, S. Robust finite element model for the design of thermoelectric modules. Journal of Electronic Materials, 39, 1848–1855 (2010)

    Article  Google Scholar 

  5. HUANG, X. L. and SHEN, H. S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. Journal of Sound and Vibration, 289, 25–53 (2006)

    Article  Google Scholar 

  6. PALMA, R., PEREZ-APARICIO, J. L., and ORTIZ, P. Refined element discontinuous numerical analysis of dry contact masonry arches. Energy Conversion and Management, 48, 578–587 (2013)

    Google Scholar 

  7. CHEN, Q. Q., BOISSE, P., HAMILA, N., SAOUAB, A., PARK, C. H., and BREARD, J. A. Finite element method for the forming simulation of the reinforcements of thermoplastic composite. International Journal ofMaterial Forming, 2, 213–216 (2009)

    Article  Google Scholar 

  8. WANG, X. B., LIU, Y. H., GAO, W., and CHEN, J. J. Mixed piezothermoelastic finite element model for thunder actuators. AIAA Journal, 49, 2100–2108 (2011)

    Article  Google Scholar 

  9. ZHANG, A. B., WANG, B. L., WANG, J., DU, J. K., XIE, C., and JIN, Y. A. Thermodynamics analysis of thermoelectric materials: influence of cracking on the efficiency of thermoelectric conversion. Applied Thermal Engineering, 127, 1442–1450 (2017)

    Article  Google Scholar 

  10. HUANG, X. L. and SHEN, H. S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. Journal of Sound and Vibration, 289, 25–53 (2006)

    Article  Google Scholar 

  11. MERGEN, H. G. Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Applied Mathematical Modelling, 59, 583–596 (2018)

    Article  MathSciNet  Google Scholar 

  12. CARUNTU, D. I. and OYERVIDES, R. Frequency response reduced order model of primary resonance of electrostatically actuated MEMS circular plate resonators. Communications in Nonlinear Science and Numerical Simulation, 43, 261–270 (2017)

    Article  Google Scholar 

  13. TANG, Y. Q. and CHEN, L. Q. Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance. Nonlinear Dynamics, 69, 159–172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. DING, H., HUANG, L. L., MAO, X. Y., and CHEN, L. Q. Primary resonance of traveling vis-coelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1–14 (2017) https://doi.org/10.1007/s10483-016-2152-6

    Article  MathSciNet  MATH  Google Scholar 

  15. LIU, T., ZHANG, W., and WANG, J. F. Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends. Nonlinear Dynamics, 90, 1393–1417 (2017)

    Article  Google Scholar 

  16. TANG, Y. Q. and CHEN, L. Q. Parametric and internal resonances of in-plane accelerating viscoelastic plates. Acta Mechanica, 233, 415–431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. LI, H. T., QIN, W. Y., LAN, C. B., DENG, W. Z., and ZHOU, Z. Y. Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Material Structures, 25, 015001 (2016)

    Article  Google Scholar 

  18. LIU, D. Y., SRITAWAT, K., CHEN, W. Q., and YANG, J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures, 189, 560–569 (2018)

    Article  Google Scholar 

  19. XUE, C. X., PAN, E., ZHANG, S. Y., and CHU, H. J. Large deflection of a rectangular magnetoelectro-elastic thin plate. Mechanics Research Communications, 38, 518–523 (2011)

    Article  MATH  Google Scholar 

  20. CHEN, J. E. and ZHANG, W. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance. Journal of Mechanical Science and Technology, 30, 4133–4142 (2016)

    Article  Google Scholar 

  21. ZHAO, H. S. and ZHANG, Y. Frequency equations of nonlocal elastic micro/nanobeams with the consideration of the surface effects. Applied Mathematics and Mechanics (English Edition), 39(8), 1089–1102 (2018) https://doi.org/10.1007/s10483-018-2358-6

    Article  MathSciNet  MATH  Google Scholar 

  22. ZHU, W. G. and BAI, X. Z. Bifurcation and chaos of a four-sides fixed thermo-magneto-elastic rectangular thin plate. Journal of Vibration and Shock, 28, 59–62 (2009)

    Google Scholar 

  23. XUE, C. X., PAN, E., HAN, Q. K., ZHANG, S. Y., and CHU, H. J. Non-linear principal resonance of an orthotropic and magnetoelastic rectangular plate. International Journal of Non-Linear Mechanics, 46, 703–710 (2011)

    Article  Google Scholar 

  24. CAO, S. Q. and GAO, J. Nonlinear dynamic model and primary resonance of piezoelectric laminated disk. Journal of Tianjin University (in Chinese), 40, 139–146 (2007)

    Google Scholar 

  25. GIANNOPOULOS, G. and SANTAFE, F. Thermal, electrical, mechanical coupled mechanics for initial buckling analysis of smart plates and beams using discrete layer kinematics. International Journal of Solids and Structures, 44, 4707–4722 (2007)

    Article  MATH  Google Scholar 

  26. JOSHI, S. P. Non-linear constitutive relations for piezoceramic materials. Smart Materials and Structures, 1, 80–83 (1992)

    Article  Google Scholar 

  27. OOTAO, Y. and TANIGAWA, Y. Three-dimensional transient piezothermoelasticity for a rectangular composite plate composed cross-ply and piezoelectric laminae. International Journal of Engineering Science, 38, 47–71 (2000)

    Article  Google Scholar 

  28. GU, H. Z., CHATTOPADHYAY, A., LI, J. M., and ZHOU, X. A higher order temperature theory for coupled thermo-piezoelectric-mechanical modeling of smart composites. International Journal of Solids and Structures, 37, 6479–6497 (2000)

    Article  MATH  Google Scholar 

  29. XUE, J. H., XIA, F., YE, J., ZHANG, J. W., CHEN, S. H., XIONG, Y., TAN, Z. Y., LIU, R. H., and YUAN, H. Multiscale studies on the nonlinear vibration of delaminated composite laminatesglobal vibration mode with micro buckles on the interfaces. Scientific Reports, 7, 4468–4473 (2017)

    Article  Google Scholar 

  30. JEYAKUMARI, S. and CHINNATHAMBI, V. Vibrational resonance in an asymmetric Duffing oscillator. International Journal ofBifurcation and Chaos, 21, 275–286 (2011)

    Article  MATH  Google Scholar 

  31. ZHOU, S. X., CAO, J. Y., and LIN, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86, 1599–1611 (2016)

    Article  Google Scholar 

  32. WANG, J. F., SU, W. B., and WANG, C. M. Piezoelectric Vibration Theory and Application (in Chinese), Science Press, Beijing, 231–242 (2011)

    Google Scholar 

  33. RYU, J. and KIM, S. S.A criterion on the inclusion of stress stiffening effects in flexible multibody dynamic system simulation. A criterion on the inclusion of stress stiffening effects in flexible multibody dynamic system simulation. Computers and Structures, 62, 1035–1048 (1997)

    Article  MATH  Google Scholar 

  34. KOVACIC, I. and BRENNAN, M. J. The Duffing Equation: Nonlinear Oscillators and Their Behavior, Wiley, New York, 103–105 (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Xue.

Additional information

Citation: WANG, X., XUE, C. X., and LI, H. T. Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates. Applied Mathematics and Mechanics (English Edition) 40(8), 1155–1168 (2019) https://doi.org/10.1007/s10483-019-2510-6

Project supported by the National Natural Science Foundation of China (No. 11202190), the Natural Science Foundation for Young Scientists of Shanxi Province of China (No. 201801D221037), and the China Postdoctoral Science Foundation (No. 2018M640373)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xue, C. & Li, H. Nonlinear primary resonance analysis for a coupled thermo-piezoelectric-mechanical model of piezoelectric rectangular thin plates. Appl. Math. Mech.-Engl. Ed. 40, 1155–1168 (2019). https://doi.org/10.1007/s10483-019-2510-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2510-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation