Skip to main content
Log in

Computation of V-notch shape factors in four-point bend specimen for fracture tests on brittle materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Four-point bend (FPB) specimen is an important test sample in mixed mode fracture study of notched components made from brittle materials like rocks, brittle polymers, ceramics, etc. On the other hand, the notch stress intensity factors (NSIFs) are vital parameters in brittle fracture assessment of V-notched structures. Therefore, computation of NSIFs in FPB specimens is of practical interest to engineers and researchers. Since the available methods for calculating the NSIFs are often cumbersome and need complicated calculations, it is preferred to show them as a set of dimensionless parameters for the FPB specimen. In this research, the finite element method coupled with a recently developed algorithm called FEOD is employed to calculate the NSIFs of a FPB specimen for several V-shape notches and for different combinations of mode I and mode II. The obtained NSIFs are then converted to dimensionless parameters called notch shape factors and are illustrated in a number of figures. It is shown that depending on the notch depth and the location of loading points, full mode mixity from pure mode I to pure mode II can be provided in the FPB specimen. The numerical results obtained in this research are verified by using very limited results reported earlier in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

Notch length (m)

A n  (n = 1, 2, . . .):

Mode I coefficients of the notch tip asymptotic field \({\left({N\,{\rm m}}_{n}^{-(1+\lambda)}\right)}\)

B n  (n = 1, 2, . . .):

Mode II coefficients of the notch tip asymptotic field \({\left({N\,{\rm m}}_{n}^{-(1+\lambda)}\right)}\)

E :

Young’s modulus (N m−2)

\({K_{\rm I}^{\rm V}}\) :

Mode I notch stress intensity factor \({\left({N\,{\rm m}}_{1}^{-(1+\lambda)}\right)}\)

K I :

Mode I stress intensity factor (N m−1.5)

\({K_{\rm II}^{\rm V}}\) :

Mode II notch stress intensity factor \({\left({N\,{\rm m}}_{2}^{-(1+\lambda)}\right)}\)

K II :

Mode II stress intensity factor (N m−1.5)

L, L 1, L 2, L 3, L 4, W :

Geometrical parameters of FPB notched specimens (m)

\({M_{V}^{e}}\) :

Notch mode mixity

P:

Applied load (N)

r :

Radial coordinate (m)

t :

Specimen thickness (m)

\({Y_{\rm I}^{\rm V}}\) :

Mode I notch shape factor

\({Y_{\rm II}^{\rm V}}\) :

Mode II notch shape factor

θ :

Angular coordinate

α :

Parameter related to the notch angle

γ :

Notch opening angle

\({\lambda_{n}^{\rm I}}\) :

Mode I eigenvalues

\({\lambda_{n}^{\rm II}}\) :

Mode II eigenvalues

ν :

Poisson’s ratio

σ x σ y τ xy :

Notch tip stresses in Cartesian coordinate (N/m2)

References

  1. Seweryn A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47(5), 673–681 (1994)

    Article  Google Scholar 

  2. Ayatollahi M.R., Torabi A.R., Azizi P.: Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch. Exp. Mech. 51(6), 919–932 (2011)

    Article  Google Scholar 

  3. Ayatollahi M.R., Torabi A.R.: A criterion for brittle fracture in U-notched components under mixed mode loading. Eng. Fract. Mech. 76, 1883–1896 (2009)

    Article  Google Scholar 

  4. Ayatollahi M.R., Torabi A.R.: Brittle fracture in rounded-tip V-shaped notches. Mater. Des. 31(1), 60–70 (2010)

    Article  Google Scholar 

  5. Leguillon D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A Solid 21, 61–72 (2002)

    Article  MATH  Google Scholar 

  6. Lazzarin P., Zambardi R.: A finite-volume-energy based approach to predict the static and fatigue behaviour of components with sharp V-shaped notches. Int. J. Fract. 112, 275–298 (2001)

    Article  Google Scholar 

  7. Yosibash Z., Bussiba A., Gilad I.: Failure criteria for brittle elastic materials. Int. J. Fract. 125, 307–333 (2004)

    Article  MATH  Google Scholar 

  8. Gross, B., Mendelson, A.: Plane Elastostatic Analysis of V-notched Plates. NASA Technical Note, NASA TN D-6040 (1970)

  9. Zhao Z., Hahn H.G.: Determining the SIF of a V-notch from the results of a mixed-mode crack. Eng. Fract. Mech. 43(4), 511–518 (1992)

    Article  Google Scholar 

  10. Dunn M.L., Suwito W.: Fracture initiation at sharp notches: correlation using critical stress intensities. Int. J. Solid Struct. 34(29), 3873–3883 (1997)

    Article  MATH  Google Scholar 

  11. Gogotsi G.A.: Fracture toughness of ceramics and ceramic composites. Ceram. Int. 29, 777–784 (2003)

    Article  Google Scholar 

  12. Shahani A.R., Tabatabaei S.A.: Computation of mixed mode stress intensity factors in a four-point bend specimen. Appl. Math. Model. 32, 1281–1288 (2008)

    Article  MATH  Google Scholar 

  13. Dunn M.L., Suwito W., Cunningham S., May C.W.: Fracture initiation at sharp notches under mode I, mode II, and mild mixed mode loading. Int. J. Fract. 84, 367–381 (1997)

    Article  Google Scholar 

  14. Priel E., Bussiba A., Gilad I., Yosibash Z.: Mixed mode failure criteria for brittle elastic V-notched structures. Int. J. Fract. 144, 247–265 (2007)

    Article  MATH  Google Scholar 

  15. Gomez F.J., Elices M.: A fracture criterion for sharp V- notched samples. Int. J. Fract. 123, 163–175 (2003)

    Article  Google Scholar 

  16. Gomez F.J., Elices M., Palanas J.: The cohesive crack concept: application to PMMA at −60°C. Eng. Fract. Mech. 72, 1268–1285 (2005)

    Article  Google Scholar 

  17. Berto F., Ayatollahi M.R.: Fracture assessment of Brazilian disc specimens weakened by blunt V-notches under mixed mode loading by means of local energy. Mater. Des. 32, 2858–2869 (2011)

    Article  Google Scholar 

  18. Tseng A.: A three-dimensional finite element analysis of the three-point bend specimen. Eng. Fract. Mech. 13, 939–943 (1980)

    Article  Google Scholar 

  19. Carpinteri A., Cornetti P., Pugno N., Sapora A.: Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions. Struct. Eng. Mech. 32(5), 609–620 (2009)

    Google Scholar 

  20. Yao X.F., Yeh H.Y., Xu W.: Fracture investigation at V-notch tip using coherent gradient sensing (CGS). Int. J. Solid Struct. 43, 1189–1200 (2006)

    Article  MATH  Google Scholar 

  21. Nallathambi P., Karihaloo B.L.: Stress intensity factor and energy release rate for three-point bend specimens. Eng. Fract. Mech. 25(3), 315–321 (1986)

    Article  Google Scholar 

  22. Pinho S.T., Robinson P., Iannucci L.: Developing a four point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites. Compos. Sci. Technol. 69, 1303–1309 (2009)

    Article  Google Scholar 

  23. Kudari S.K., Sharanaprabhu C.M.: On the relationship between stress intensity factor (K) and minimum plastic zone radius (MPZR) for four point bend specimen under mixed mode loading. Int. J. Eng. Sci. Technol. 2(5), 13–22 (2010)

    Google Scholar 

  24. He M.Y., Cao H.C., Evans A.G.: Mixed-mode fracture: the four-point shear specimen. Acta Metall. Mater. 38(5), 839–846 (1990)

    Article  Google Scholar 

  25. Fett T.: Stress intensity factors for edge crack subjected to mixed mode four-point bending. Theor. Appl. Fract. Mech. 15, 99–104 (1991)

    Article  Google Scholar 

  26. Tong P., Pian T.H.H., Lasry S.J.: A hybrid element approach to crack problems in plane elasticity. Int. J. Numer. Methods Eng. 7, 297–308 (1973)

    Article  MATH  Google Scholar 

  27. Sanford R.J., Dally J.W.: A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns. Eng. Fract. Mech. 11, 621–633 (1979)

    Article  Google Scholar 

  28. Ramesh K., Gupta S., Kelkar A.A.: Evaluation of stress field parameters in fracture mechanics by photoelasticity-revisited. Eng. Fract. Mech. 56, 25–45 (1997)

    Article  Google Scholar 

  29. Ayatollahi M.R., Nejati M.: An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis. Fatigue Fract. Eng. Mater. Struct. 34(3), 159–176 (2011)

    Article  Google Scholar 

  30. Xiao Q.Z., Karihaloo B.L., Liu X.Y.: Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element. Int. J. Fract. 125, 207–225 (2004)

    Article  MATH  Google Scholar 

  31. Durig B., Zhang F., McNeill S.R., Chao Y.J., Peters W.H.: A study of mixed mode fracture by photoelasticity and digital image analysis. Opt. Laser Eng. 14(3), 203–215 (1991)

    Article  Google Scholar 

  32. Noda N.A., Kihara T.A.: Variation of the stress intensity factor along the front of a 3-D rectangular crack subjected to mixed-mode load. Arch. Appl. Mech. 72, 599–614 (2002)

    Article  MATH  Google Scholar 

  33. Xuan Z.C., Khoo B.C., Li Z.R.: Computing bounds to mixed-mode stress intensity factors in elasticity. Arch. Appl. Mech. 75, 193–209 (2006)

    Article  MATH  Google Scholar 

  34. Gross B., Mendelson A.: Plane elastostatic analysis of V-notched plates. Int. J. Fract. Mech. 8, 267–276 (1972)

    Article  Google Scholar 

  35. Lin K.Y., Tong P.: Singular finite elements for the fracture analysis of v-notched plate. Int. J. Numer. Methods Eng. 15, 1343–1354 (1980)

    Article  MATH  Google Scholar 

  36. Carpenter W.C.: Mode I and mode II stress intensities for plates with cracks of finite opening. Int. J. Fract. 26, 201–214 (1984)

    Article  Google Scholar 

  37. Stern M., Becker E.B., Dunham R.S.: A contour integral computation of mixed mode stress intensity factors. Int. J. Fract. 12, 359–368 (1976)

    Google Scholar 

  38. Ayatollahi M.R., Nejati M.: Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method. Int. J. Mech. Sci. 53, 164–177 (2011)

    Article  Google Scholar 

  39. Williams M.L.: Stress singularities resulting from various boundary conditions in angular plates in extension. J. Appl. Mech. 19, 526–528 (1952)

    Google Scholar 

  40. Berto, F., Gogotsi, G.A., Lazzarin, P.: Generalised Stress Intensity factors applied to fracture toughness data from V-notches with small root radii. In: Proceedings of the 11th International Conference on Fracture, Italy (2005)

  41. Grenestedt J.L., Hallstrom S., Kuttenkeuler J.: On cracks emanating from wedges in expanded PVC foam. Eng. Fract. Mech. 54(4), 445–456 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ayatollahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayatollahi, M.R., Dehghany, M. & Kaveh, Z. Computation of V-notch shape factors in four-point bend specimen for fracture tests on brittle materials. Arch Appl Mech 83, 345–356 (2013). https://doi.org/10.1007/s00419-012-0654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0654-0

Keywords

Navigation